### (0) Obligation:

The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1).

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: FULL

### (1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)

The following defined symbols can occur below the 0th argument of top: proper, active
The following defined symbols can occur below the 0th argument of proper: proper, active
The following defined symbols can occur below the 0th argument of active: proper, active

Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))

### (2) Obligation:

The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1).

The TRS R consists of the following rules:

top(ok(X)) → top(active(X))
proper(tt) → ok(tt)
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
proper(0) → ok(0)
and(mark(X1), X2) → mark(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
top(mark(X)) → top(proper(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))

Rewrite Strategy: FULL

### (3) RcToIrcProof (BOTH BOUNDS(ID, ID) transformation)

Converted rc-obligation to irc-obligation.

As the TRS is a non-duplicating overlay system, we have rc = irc.

### (4) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).

The TRS R consists of the following rules:

top(ok(X)) → top(active(X))
proper(tt) → ok(tt)
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
proper(0) → ok(0)
and(mark(X1), X2) → mark(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
top(mark(X)) → top(proper(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))

Rewrite Strategy: INNERMOST

### (5) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)

A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2.

The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3, 4, 5]
transitions:
ok0(0) → 0
active0(0) → 0
tt0() → 0
mark0(0) → 0
00() → 0
top0(0) → 1
proper0(0) → 2
s0(0) → 3
plus0(0, 0) → 4
and0(0, 0) → 5
active1(0) → 6
top1(6) → 1
tt1() → 7
ok1(7) → 2
s1(0) → 8
ok1(8) → 3
s1(0) → 9
mark1(9) → 3
plus1(0, 0) → 10
mark1(10) → 4
01() → 11
ok1(11) → 2
and1(0, 0) → 12
mark1(12) → 5
plus1(0, 0) → 13
ok1(13) → 4
proper1(0) → 14
top1(14) → 1
and1(0, 0) → 15
ok1(15) → 5
ok1(7) → 14
ok1(8) → 8
ok1(8) → 9
mark1(9) → 8
mark1(9) → 9
mark1(10) → 10
mark1(10) → 13
ok1(11) → 14
mark1(12) → 12
mark1(12) → 15
ok1(13) → 10
ok1(13) → 13
ok1(15) → 12
ok1(15) → 15
active2(7) → 16
top2(16) → 1
active2(11) → 16