### (0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0) → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Rewrite Strategy: FULL

### (1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
activate(n__plus(X1, n__0)) →+ U31(isNat(activate(X1)), activate(X1))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [X1 / n__plus(X1, n__0)].
The result substitution is [ ].

The rewrite sequence
activate(n__plus(X1, n__0)) →+ U31(isNat(activate(X1)), activate(X1))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [X1 / n__plus(X1, n__0)].
The result substitution is [ ].

### (3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

### (4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0') → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

S is empty.
Rewrite Strategy: FULL

Infered types.

### (6) Obligation:

TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0') → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s

### (7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
isNat, activate, U31, plus

They will be analysed ascendingly in the following order:
isNat = activate
isNat = U31
isNat = plus
activate = U31
activate = plus
U31 = plus

### (8) Obligation:

TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0') → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s

Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)

The following defined symbols remain to be analysed:
activate, isNat, U31, plus

They will be analysed ascendingly in the following order:
isNat = activate
isNat = U31
isNat = plus
activate = U31
activate = plus
U31 = plus

### (9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
activate(gen_n__0:n__plus:n__s3_3(n5_3)) → gen_n__0:n__plus:n__s3_3(n5_3), rt ∈ Ω(1 + n53)

Induction Base:
activate(gen_n__0:n__plus:n__s3_3(0)) →RΩ(1)
gen_n__0:n__plus:n__s3_3(0)

Induction Step:
activate(gen_n__0:n__plus:n__s3_3(+(n5_3, 1))) →RΩ(1)
plus(activate(gen_n__0:n__plus:n__s3_3(n5_3)), activate(n__0)) →IH
plus(gen_n__0:n__plus:n__s3_3(c6_3), activate(n__0)) →RΩ(1)
plus(gen_n__0:n__plus:n__s3_3(n5_3), n__0) →RΩ(1)
n__plus(gen_n__0:n__plus:n__s3_3(n5_3), n__0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (11) Obligation:

TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0') → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s

Lemmas:
activate(gen_n__0:n__plus:n__s3_3(n5_3)) → gen_n__0:n__plus:n__s3_3(n5_3), rt ∈ Ω(1 + n53)

Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)

The following defined symbols remain to be analysed:
plus, isNat, U31

They will be analysed ascendingly in the following order:
isNat = activate
isNat = U31
isNat = plus
activate = U31
activate = plus
U31 = plus

### (12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol plus.

### (13) Obligation:

TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0') → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s

Lemmas:
activate(gen_n__0:n__plus:n__s3_3(n5_3)) → gen_n__0:n__plus:n__s3_3(n5_3), rt ∈ Ω(1 + n53)

Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)

The following defined symbols remain to be analysed:
U31, isNat

They will be analysed ascendingly in the following order:
isNat = activate
isNat = U31
isNat = plus
activate = U31
activate = plus
U31 = plus

### (14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol U31.

### (15) Obligation:

TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0') → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s

Lemmas:
activate(gen_n__0:n__plus:n__s3_3(n5_3)) → gen_n__0:n__plus:n__s3_3(n5_3), rt ∈ Ω(1 + n53)

Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)

The following defined symbols remain to be analysed:
isNat

They will be analysed ascendingly in the following order:
isNat = activate
isNat = U31
isNat = plus
activate = U31
activate = plus
U31 = plus

### (16) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
isNat(gen_n__0:n__plus:n__s3_3(n2039_3)) → tt, rt ∈ Ω(1 + n20393 + n203932)

Induction Base:
isNat(gen_n__0:n__plus:n__s3_3(0)) →RΩ(1)
tt

Induction Step:
isNat(gen_n__0:n__plus:n__s3_3(+(n2039_3, 1))) →RΩ(1)
U11(isNat(activate(gen_n__0:n__plus:n__s3_3(n2039_3))), activate(n__0)) →LΩ(1 + n20393)
U11(isNat(gen_n__0:n__plus:n__s3_3(n2039_3)), activate(n__0)) →IH
U11(tt, activate(n__0)) →LΩ(1)
U11(tt, gen_n__0:n__plus:n__s3_3(0)) →RΩ(1)
U12(isNat(activate(gen_n__0:n__plus:n__s3_3(0)))) →LΩ(1)
U12(isNat(gen_n__0:n__plus:n__s3_3(0))) →RΩ(1)
U12(tt) →RΩ(1)
tt

We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).

### (18) Obligation:

TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0') → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s

Lemmas:
activate(gen_n__0:n__plus:n__s3_3(n5_3)) → gen_n__0:n__plus:n__s3_3(n5_3), rt ∈ Ω(1 + n53)
isNat(gen_n__0:n__plus:n__s3_3(n2039_3)) → tt, rt ∈ Ω(1 + n20393 + n203932)

Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)

The following defined symbols remain to be analysed:
activate, U31, plus

They will be analysed ascendingly in the following order:
isNat = activate
isNat = U31
isNat = plus
activate = U31
activate = plus
U31 = plus

### (19) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
activate(gen_n__0:n__plus:n__s3_3(n3260_3)) → gen_n__0:n__plus:n__s3_3(n3260_3), rt ∈ Ω(1 + n32603)

Induction Base:
activate(gen_n__0:n__plus:n__s3_3(0)) →RΩ(1)
gen_n__0:n__plus:n__s3_3(0)

Induction Step:
activate(gen_n__0:n__plus:n__s3_3(+(n3260_3, 1))) →RΩ(1)
plus(activate(gen_n__0:n__plus:n__s3_3(n3260_3)), activate(n__0)) →IH
plus(gen_n__0:n__plus:n__s3_3(c3261_3), activate(n__0)) →RΩ(1)
plus(gen_n__0:n__plus:n__s3_3(n3260_3), n__0) →RΩ(1)
n__plus(gen_n__0:n__plus:n__s3_3(n3260_3), n__0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (21) Obligation:

TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0') → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s

Lemmas:
activate(gen_n__0:n__plus:n__s3_3(n3260_3)) → gen_n__0:n__plus:n__s3_3(n3260_3), rt ∈ Ω(1 + n32603)
isNat(gen_n__0:n__plus:n__s3_3(n2039_3)) → tt, rt ∈ Ω(1 + n20393 + n203932)

Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)

The following defined symbols remain to be analysed:
plus, U31

They will be analysed ascendingly in the following order:
isNat = activate
isNat = U31
isNat = plus
activate = U31
activate = plus
U31 = plus

### (22) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol plus.

### (23) Obligation:

TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0') → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s

Lemmas:
activate(gen_n__0:n__plus:n__s3_3(n3260_3)) → gen_n__0:n__plus:n__s3_3(n3260_3), rt ∈ Ω(1 + n32603)
isNat(gen_n__0:n__plus:n__s3_3(n2039_3)) → tt, rt ∈ Ω(1 + n20393 + n203932)

Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)

The following defined symbols remain to be analysed:
U31

They will be analysed ascendingly in the following order:
isNat = activate
isNat = U31
isNat = plus
activate = U31
activate = plus
U31 = plus

### (24) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol U31.

### (25) Obligation:

TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0') → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s

Lemmas:
activate(gen_n__0:n__plus:n__s3_3(n3260_3)) → gen_n__0:n__plus:n__s3_3(n3260_3), rt ∈ Ω(1 + n32603)
isNat(gen_n__0:n__plus:n__s3_3(n2039_3)) → tt, rt ∈ Ω(1 + n20393 + n203932)

Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)

No more defined symbols left to analyse.

### (26) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
isNat(gen_n__0:n__plus:n__s3_3(n2039_3)) → tt, rt ∈ Ω(1 + n20393 + n203932)

### (28) Obligation:

TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0') → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s

Lemmas:
activate(gen_n__0:n__plus:n__s3_3(n3260_3)) → gen_n__0:n__plus:n__s3_3(n3260_3), rt ∈ Ω(1 + n32603)
isNat(gen_n__0:n__plus:n__s3_3(n2039_3)) → tt, rt ∈ Ω(1 + n20393 + n203932)

Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)

No more defined symbols left to analyse.

### (29) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
isNat(gen_n__0:n__plus:n__s3_3(n2039_3)) → tt, rt ∈ Ω(1 + n20393 + n203932)

### (31) Obligation:

TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0') → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s

Lemmas:
activate(gen_n__0:n__plus:n__s3_3(n5_3)) → gen_n__0:n__plus:n__s3_3(n5_3), rt ∈ Ω(1 + n53)
isNat(gen_n__0:n__plus:n__s3_3(n2039_3)) → tt, rt ∈ Ω(1 + n20393 + n203932)

Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)

No more defined symbols left to analyse.

### (32) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
isNat(gen_n__0:n__plus:n__s3_3(n2039_3)) → tt, rt ∈ Ω(1 + n20393 + n203932)

### (34) Obligation:

TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0') → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s → tt
activate :: n__0:n__plus:n__s → n__0:n__plus:n__s
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s
U41 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
U42 :: tt → n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
s :: n__0:n__plus:n__s → n__0:n__plus:n__s
plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__0 :: n__0:n__plus:n__s
n__plus :: n__0:n__plus:n__s → n__0:n__plus:n__s → n__0:n__plus:n__s
n__s :: n__0:n__plus:n__s → n__0:n__plus:n__s
0' :: n__0:n__plus:n__s
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s
gen_n__0:n__plus:n__s3_3 :: Nat → n__0:n__plus:n__s

Lemmas:
activate(gen_n__0:n__plus:n__s3_3(n5_3)) → gen_n__0:n__plus:n__s3_3(n5_3), rt ∈ Ω(1 + n53)

Generator Equations:
gen_n__0:n__plus:n__s3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s3_3(x), n__0)

No more defined symbols left to analyse.

### (35) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
activate(gen_n__0:n__plus:n__s3_3(n5_3)) → gen_n__0:n__plus:n__s3_3(n5_3), rt ∈ Ω(1 + n53)