KILLED



    


Runtime Complexity (full) proof of /tmp/tmpZgBoMz/PEANO_complete_noand_C.xml


(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
U11(mark(X1), X2, X3) →+ mark(U11(X1, X2, X3))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X1 / mark(X1)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
active, U12, isNatKind, U13, U14, U15, isNat, U16, U22, U23, U32, U52, U62, U63, U64, s, plus, U11, U21, U31, U41, U51, U61, proper, top

They will be analysed ascendingly in the following order:
U12 < active
isNatKind < active
U13 < active
U14 < active
U15 < active
isNat < active
U16 < active
U22 < active
U23 < active
U32 < active
U52 < active
U62 < active
U63 < active
U64 < active
s < active
plus < active
U11 < active
U21 < active
U31 < active
U41 < active
U51 < active
U61 < active
active < top
U12 < proper
isNatKind < proper
U13 < proper
U14 < proper
U15 < proper
isNat < proper
U16 < proper
U22 < proper
U23 < proper
U32 < proper
U52 < proper
U62 < proper
U63 < proper
U64 < proper
s < proper
plus < proper
U11 < proper
U21 < proper
U31 < proper
U41 < proper
U51 < proper
U61 < proper
proper < top

(8) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
U12, active, isNatKind, U13, U14, U15, isNat, U16, U22, U23, U32, U52, U62, U63, U64, s, plus, U11, U21, U31, U41, U51, U61, proper, top

They will be analysed ascendingly in the following order:
U12 < active
isNatKind < active
U13 < active
U14 < active
U15 < active
isNat < active
U16 < active
U22 < active
U23 < active
U32 < active
U52 < active
U62 < active
U63 < active
U64 < active
s < active
plus < active
U11 < active
U21 < active
U31 < active
U41 < active
U51 < active
U61 < active
active < top
U12 < proper
isNatKind < proper
U13 < proper
U14 < proper
U15 < proper
isNat < proper
U16 < proper
U22 < proper
U23 < proper
U32 < proper
U52 < proper
U62 < proper
U63 < proper
U64 < proper
s < proper
plus < proper
U11 < proper
U21 < proper
U31 < proper
U41 < proper
U51 < proper
U61 < proper
proper < top

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50)

Induction Base:
U12(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c))

Induction Step:
U12(gen_tt:mark:0':ok3_0(+(1, +(n5_0, 1))), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) →RΩ(1)
mark(U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
isNatKind, active, U13, U14, U15, isNat, U16, U22, U23, U32, U52, U62, U63, U64, s, plus, U11, U21, U31, U41, U51, U61, proper, top

They will be analysed ascendingly in the following order:
isNatKind < active
U13 < active
U14 < active
U15 < active
isNat < active
U16 < active
U22 < active
U23 < active
U32 < active
U52 < active
U62 < active
U63 < active
U64 < active
s < active
plus < active
U11 < active
U21 < active
U31 < active
U41 < active
U51 < active
U61 < active
active < top
isNatKind < proper
U13 < proper
U14 < proper
U15 < proper
isNat < proper
U16 < proper
U22 < proper
U23 < proper
U32 < proper
U52 < proper
U62 < proper
U63 < proper
U64 < proper
s < proper
plus < proper
U11 < proper
U21 < proper
U31 < proper
U41 < proper
U51 < proper
U61 < proper
proper < top

(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol isNatKind.

(13) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
U13, active, U14, U15, isNat, U16, U22, U23, U32, U52, U62, U63, U64, s, plus, U11, U21, U31, U41, U51, U61, proper, top

They will be analysed ascendingly in the following order:
U13 < active
U14 < active
U15 < active
isNat < active
U16 < active
U22 < active
U23 < active
U32 < active
U52 < active
U62 < active
U63 < active
U64 < active
s < active
plus < active
U11 < active
U21 < active
U31 < active
U41 < active
U51 < active
U61 < active
active < top
U13 < proper
U14 < proper
U15 < proper
isNat < proper
U16 < proper
U22 < proper
U23 < proper
U32 < proper
U52 < proper
U62 < proper
U63 < proper
U64 < proper
s < proper
plus < proper
U11 < proper
U21 < proper
U31 < proper
U41 < proper
U51 < proper
U61 < proper
proper < top

(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
U13(gen_tt:mark:0':ok3_0(+(1, n3363_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n33630)

Induction Base:
U13(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c))

Induction Step:
U13(gen_tt:mark:0':ok3_0(+(1, +(n3363_0, 1))), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) →RΩ(1)
mark(U13(gen_tt:mark:0':ok3_0(+(1, n3363_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(15) Complex Obligation (BEST)

(16) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50)
U13(gen_tt:mark:0':ok3_0(+(1, n3363_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n33630)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
U14, active, U15, isNat, U16, U22, U23, U32, U52, U62, U63, U64, s, plus, U11, U21, U31, U41, U51, U61, proper, top

They will be analysed ascendingly in the following order:
U14 < active
U15 < active
isNat < active
U16 < active
U22 < active
U23 < active
U32 < active
U52 < active
U62 < active
U63 < active
U64 < active
s < active
plus < active
U11 < active
U21 < active
U31 < active
U41 < active
U51 < active
U61 < active
active < top
U14 < proper
U15 < proper
isNat < proper
U16 < proper
U22 < proper
U23 < proper
U32 < proper
U52 < proper
U62 < proper
U63 < proper
U64 < proper
s < proper
plus < proper
U11 < proper
U21 < proper
U31 < proper
U41 < proper
U51 < proper
U61 < proper
proper < top

(17) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
U14(gen_tt:mark:0':ok3_0(+(1, n7315_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n73150)

Induction Base:
U14(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c))

Induction Step:
U14(gen_tt:mark:0':ok3_0(+(1, +(n7315_0, 1))), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) →RΩ(1)
mark(U14(gen_tt:mark:0':ok3_0(+(1, n7315_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(18) Complex Obligation (BEST)

(19) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50)
U13(gen_tt:mark:0':ok3_0(+(1, n3363_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n33630)
U14(gen_tt:mark:0':ok3_0(+(1, n7315_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n73150)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
U15, active, isNat, U16, U22, U23, U32, U52, U62, U63, U64, s, plus, U11, U21, U31, U41, U51, U61, proper, top

They will be analysed ascendingly in the following order:
U15 < active
isNat < active
U16 < active
U22 < active
U23 < active
U32 < active
U52 < active
U62 < active
U63 < active
U64 < active
s < active
plus < active
U11 < active
U21 < active
U31 < active
U41 < active
U51 < active
U61 < active
active < top
U15 < proper
isNat < proper
U16 < proper
U22 < proper
U23 < proper
U32 < proper
U52 < proper
U62 < proper
U63 < proper
U64 < proper
s < proper
plus < proper
U11 < proper
U21 < proper
U31 < proper
U41 < proper
U51 < proper
U61 < proper
proper < top

(20) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
U15(gen_tt:mark:0':ok3_0(+(1, n11872_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n118720)

Induction Base:
U15(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b))

Induction Step:
U15(gen_tt:mark:0':ok3_0(+(1, +(n11872_0, 1))), gen_tt:mark:0':ok3_0(b)) →RΩ(1)
mark(U15(gen_tt:mark:0':ok3_0(+(1, n11872_0)), gen_tt:mark:0':ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(21) Complex Obligation (BEST)

(22) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50)
U13(gen_tt:mark:0':ok3_0(+(1, n3363_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n33630)
U14(gen_tt:mark:0':ok3_0(+(1, n7315_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n73150)
U15(gen_tt:mark:0':ok3_0(+(1, n11872_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n118720)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
isNat, active, U16, U22, U23, U32, U52, U62, U63, U64, s, plus, U11, U21, U31, U41, U51, U61, proper, top

They will be analysed ascendingly in the following order:
isNat < active
U16 < active
U22 < active
U23 < active
U32 < active
U52 < active
U62 < active
U63 < active
U64 < active
s < active
plus < active
U11 < active
U21 < active
U31 < active
U41 < active
U51 < active
U61 < active
active < top
isNat < proper
U16 < proper
U22 < proper
U23 < proper
U32 < proper
U52 < proper
U62 < proper
U63 < proper
U64 < proper
s < proper
plus < proper
U11 < proper
U21 < proper
U31 < proper
U41 < proper
U51 < proper
U61 < proper
proper < top

(23) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol isNat.

(24) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50)
U13(gen_tt:mark:0':ok3_0(+(1, n3363_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n33630)
U14(gen_tt:mark:0':ok3_0(+(1, n7315_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n73150)
U15(gen_tt:mark:0':ok3_0(+(1, n11872_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n118720)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
U16, active, U22, U23, U32, U52, U62, U63, U64, s, plus, U11, U21, U31, U41, U51, U61, proper, top

They will be analysed ascendingly in the following order:
U16 < active
U22 < active
U23 < active
U32 < active
U52 < active
U62 < active
U63 < active
U64 < active
s < active
plus < active
U11 < active
U21 < active
U31 < active
U41 < active
U51 < active
U61 < active
active < top
U16 < proper
U22 < proper
U23 < proper
U32 < proper
U52 < proper
U62 < proper
U63 < proper
U64 < proper
s < proper
plus < proper
U11 < proper
U21 < proper
U31 < proper
U41 < proper
U51 < proper
U61 < proper
proper < top

(25) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
U16(gen_tt:mark:0':ok3_0(+(1, n15037_0))) → *4_0, rt ∈ Ω(n150370)

Induction Base:
U16(gen_tt:mark:0':ok3_0(+(1, 0)))

Induction Step:
U16(gen_tt:mark:0':ok3_0(+(1, +(n15037_0, 1)))) →RΩ(1)
mark(U16(gen_tt:mark:0':ok3_0(+(1, n15037_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(26) Complex Obligation (BEST)

(27) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50)
U13(gen_tt:mark:0':ok3_0(+(1, n3363_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n33630)
U14(gen_tt:mark:0':ok3_0(+(1, n7315_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n73150)
U15(gen_tt:mark:0':ok3_0(+(1, n11872_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n118720)
U16(gen_tt:mark:0':ok3_0(+(1, n15037_0))) → *4_0, rt ∈ Ω(n150370)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
U22, active, U23, U32, U52, U62, U63, U64, s, plus, U11, U21, U31, U41, U51, U61, proper, top

They will be analysed ascendingly in the following order:
U22 < active
U23 < active
U32 < active
U52 < active
U62 < active
U63 < active
U64 < active
s < active
plus < active
U11 < active
U21 < active
U31 < active
U41 < active
U51 < active
U61 < active
active < top
U22 < proper
U23 < proper
U32 < proper
U52 < proper
U62 < proper
U63 < proper
U64 < proper
s < proper
plus < proper
U11 < proper
U21 < proper
U31 < proper
U41 < proper
U51 < proper
U61 < proper
proper < top

(28) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
U22(gen_tt:mark:0':ok3_0(+(1, n16399_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n163990)

Induction Base:
U22(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b))

Induction Step:
U22(gen_tt:mark:0':ok3_0(+(1, +(n16399_0, 1))), gen_tt:mark:0':ok3_0(b)) →RΩ(1)
mark(U22(gen_tt:mark:0':ok3_0(+(1, n16399_0)), gen_tt:mark:0':ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(29) Complex Obligation (BEST)

(30) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50)
U13(gen_tt:mark:0':ok3_0(+(1, n3363_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n33630)
U14(gen_tt:mark:0':ok3_0(+(1, n7315_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n73150)
U15(gen_tt:mark:0':ok3_0(+(1, n11872_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n118720)
U16(gen_tt:mark:0':ok3_0(+(1, n15037_0))) → *4_0, rt ∈ Ω(n150370)
U22(gen_tt:mark:0':ok3_0(+(1, n16399_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n163990)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
U23, active, U32, U52, U62, U63, U64, s, plus, U11, U21, U31, U41, U51, U61, proper, top

They will be analysed ascendingly in the following order:
U23 < active
U32 < active
U52 < active
U62 < active
U63 < active
U64 < active
s < active
plus < active
U11 < active
U21 < active
U31 < active
U41 < active
U51 < active
U61 < active
active < top
U23 < proper
U32 < proper
U52 < proper
U62 < proper
U63 < proper
U64 < proper
s < proper
plus < proper
U11 < proper
U21 < proper
U31 < proper
U41 < proper
U51 < proper
U61 < proper
proper < top

(31) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
U23(gen_tt:mark:0':ok3_0(+(1, n20044_0))) → *4_0, rt ∈ Ω(n200440)

Induction Base:
U23(gen_tt:mark:0':ok3_0(+(1, 0)))

Induction Step:
U23(gen_tt:mark:0':ok3_0(+(1, +(n20044_0, 1)))) →RΩ(1)
mark(U23(gen_tt:mark:0':ok3_0(+(1, n20044_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(32) Complex Obligation (BEST)

(33) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50)
U13(gen_tt:mark:0':ok3_0(+(1, n3363_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n33630)
U14(gen_tt:mark:0':ok3_0(+(1, n7315_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n73150)
U15(gen_tt:mark:0':ok3_0(+(1, n11872_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n118720)
U16(gen_tt:mark:0':ok3_0(+(1, n15037_0))) → *4_0, rt ∈ Ω(n150370)
U22(gen_tt:mark:0':ok3_0(+(1, n16399_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n163990)
U23(gen_tt:mark:0':ok3_0(+(1, n20044_0))) → *4_0, rt ∈ Ω(n200440)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
U32, active, U52, U62, U63, U64, s, plus, U11, U21, U31, U41, U51, U61, proper, top

They will be analysed ascendingly in the following order:
U32 < active
U52 < active
U62 < active
U63 < active
U64 < active
s < active
plus < active
U11 < active
U21 < active
U31 < active
U41 < active
U51 < active
U61 < active
active < top
U32 < proper
U52 < proper
U62 < proper
U63 < proper
U64 < proper
s < proper
plus < proper
U11 < proper
U21 < proper
U31 < proper
U41 < proper
U51 < proper
U61 < proper
proper < top

(34) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
U32(gen_tt:mark:0':ok3_0(+(1, n21657_0))) → *4_0, rt ∈ Ω(n216570)

Induction Base:
U32(gen_tt:mark:0':ok3_0(+(1, 0)))

Induction Step:
U32(gen_tt:mark:0':ok3_0(+(1, +(n21657_0, 1)))) →RΩ(1)
mark(U32(gen_tt:mark:0':ok3_0(+(1, n21657_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(35) Complex Obligation (BEST)

(36) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50)
U13(gen_tt:mark:0':ok3_0(+(1, n3363_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n33630)
U14(gen_tt:mark:0':ok3_0(+(1, n7315_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n73150)
U15(gen_tt:mark:0':ok3_0(+(1, n11872_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n118720)
U16(gen_tt:mark:0':ok3_0(+(1, n15037_0))) → *4_0, rt ∈ Ω(n150370)
U22(gen_tt:mark:0':ok3_0(+(1, n16399_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n163990)
U23(gen_tt:mark:0':ok3_0(+(1, n20044_0))) → *4_0, rt ∈ Ω(n200440)
U32(gen_tt:mark:0':ok3_0(+(1, n21657_0))) → *4_0, rt ∈ Ω(n216570)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
U52, active, U62, U63, U64, s, plus, U11, U21, U31, U41, U51, U61, proper, top

They will be analysed ascendingly in the following order:
U52 < active
U62 < active
U63 < active
U64 < active
s < active
plus < active
U11 < active
U21 < active
U31 < active
U41 < active
U51 < active
U61 < active
active < top
U52 < proper
U62 < proper
U63 < proper
U64 < proper
s < proper
plus < proper
U11 < proper
U21 < proper
U31 < proper
U41 < proper
U51 < proper
U61 < proper
proper < top

(37) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
U52(gen_tt:mark:0':ok3_0(+(1, n23371_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n233710)

Induction Base:
U52(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b))

Induction Step:
U52(gen_tt:mark:0':ok3_0(+(1, +(n23371_0, 1))), gen_tt:mark:0':ok3_0(b)) →RΩ(1)
mark(U52(gen_tt:mark:0':ok3_0(+(1, n23371_0)), gen_tt:mark:0':ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(38) Complex Obligation (BEST)

(39) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50)
U13(gen_tt:mark:0':ok3_0(+(1, n3363_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n33630)
U14(gen_tt:mark:0':ok3_0(+(1, n7315_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n73150)
U15(gen_tt:mark:0':ok3_0(+(1, n11872_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n118720)
U16(gen_tt:mark:0':ok3_0(+(1, n15037_0))) → *4_0, rt ∈ Ω(n150370)
U22(gen_tt:mark:0':ok3_0(+(1, n16399_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n163990)
U23(gen_tt:mark:0':ok3_0(+(1, n20044_0))) → *4_0, rt ∈ Ω(n200440)
U32(gen_tt:mark:0':ok3_0(+(1, n21657_0))) → *4_0, rt ∈ Ω(n216570)
U52(gen_tt:mark:0':ok3_0(+(1, n23371_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n233710)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
U62, active, U63, U64, s, plus, U11, U21, U31, U41, U51, U61, proper, top

They will be analysed ascendingly in the following order:
U62 < active
U63 < active
U64 < active
s < active
plus < active
U11 < active
U21 < active
U31 < active
U41 < active
U51 < active
U61 < active
active < top
U62 < proper
U63 < proper
U64 < proper
s < proper
plus < proper
U11 < proper
U21 < proper
U31 < proper
U41 < proper
U51 < proper
U61 < proper
proper < top

(40) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
U62(gen_tt:mark:0':ok3_0(+(1, n27732_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n277320)

Induction Base:
U62(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c))

Induction Step:
U62(gen_tt:mark:0':ok3_0(+(1, +(n27732_0, 1))), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) →RΩ(1)
mark(U62(gen_tt:mark:0':ok3_0(+(1, n27732_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(41) Complex Obligation (BEST)

(42) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50)
U13(gen_tt:mark:0':ok3_0(+(1, n3363_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n33630)
U14(gen_tt:mark:0':ok3_0(+(1, n7315_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n73150)
U15(gen_tt:mark:0':ok3_0(+(1, n11872_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n118720)
U16(gen_tt:mark:0':ok3_0(+(1, n15037_0))) → *4_0, rt ∈ Ω(n150370)
U22(gen_tt:mark:0':ok3_0(+(1, n16399_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n163990)
U23(gen_tt:mark:0':ok3_0(+(1, n20044_0))) → *4_0, rt ∈ Ω(n200440)
U32(gen_tt:mark:0':ok3_0(+(1, n21657_0))) → *4_0, rt ∈ Ω(n216570)
U52(gen_tt:mark:0':ok3_0(+(1, n23371_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n233710)
U62(gen_tt:mark:0':ok3_0(+(1, n27732_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n277320)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
U63, active, U64, s, plus, U11, U21, U31, U41, U51, U61, proper, top

They will be analysed ascendingly in the following order:
U63 < active
U64 < active
s < active
plus < active
U11 < active
U21 < active
U31 < active
U41 < active
U51 < active
U61 < active
active < top
U63 < proper
U64 < proper
s < proper
plus < proper
U11 < proper
U21 < proper
U31 < proper
U41 < proper
U51 < proper
U61 < proper
proper < top

(43) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
U63(gen_tt:mark:0':ok3_0(+(1, n35201_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n352010)

Induction Base:
U63(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c))

Induction Step:
U63(gen_tt:mark:0':ok3_0(+(1, +(n35201_0, 1))), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) →RΩ(1)
mark(U63(gen_tt:mark:0':ok3_0(+(1, n35201_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(44) Complex Obligation (BEST)

(45) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50)
U13(gen_tt:mark:0':ok3_0(+(1, n3363_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n33630)
U14(gen_tt:mark:0':ok3_0(+(1, n7315_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n73150)
U15(gen_tt:mark:0':ok3_0(+(1, n11872_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n118720)
U16(gen_tt:mark:0':ok3_0(+(1, n15037_0))) → *4_0, rt ∈ Ω(n150370)
U22(gen_tt:mark:0':ok3_0(+(1, n16399_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n163990)
U23(gen_tt:mark:0':ok3_0(+(1, n20044_0))) → *4_0, rt ∈ Ω(n200440)
U32(gen_tt:mark:0':ok3_0(+(1, n21657_0))) → *4_0, rt ∈ Ω(n216570)
U52(gen_tt:mark:0':ok3_0(+(1, n23371_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n233710)
U62(gen_tt:mark:0':ok3_0(+(1, n27732_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n277320)
U63(gen_tt:mark:0':ok3_0(+(1, n35201_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n352010)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
U64, active, s, plus, U11, U21, U31, U41, U51, U61, proper, top

They will be analysed ascendingly in the following order:
U64 < active
s < active
plus < active
U11 < active
U21 < active
U31 < active
U41 < active
U51 < active
U61 < active
active < top
U64 < proper
s < proper
plus < proper
U11 < proper
U21 < proper
U31 < proper
U41 < proper
U51 < proper
U61 < proper
proper < top

(46) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
U64(gen_tt:mark:0':ok3_0(+(1, n43275_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n432750)

Induction Base:
U64(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c))

Induction Step:
U64(gen_tt:mark:0':ok3_0(+(1, +(n43275_0, 1))), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) →RΩ(1)
mark(U64(gen_tt:mark:0':ok3_0(+(1, n43275_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(47) Complex Obligation (BEST)

(48) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50)
U13(gen_tt:mark:0':ok3_0(+(1, n3363_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n33630)
U14(gen_tt:mark:0':ok3_0(+(1, n7315_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n73150)
U15(gen_tt:mark:0':ok3_0(+(1, n11872_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n118720)
U16(gen_tt:mark:0':ok3_0(+(1, n15037_0))) → *4_0, rt ∈ Ω(n150370)
U22(gen_tt:mark:0':ok3_0(+(1, n16399_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n163990)
U23(gen_tt:mark:0':ok3_0(+(1, n20044_0))) → *4_0, rt ∈ Ω(n200440)
U32(gen_tt:mark:0':ok3_0(+(1, n21657_0))) → *4_0, rt ∈ Ω(n216570)
U52(gen_tt:mark:0':ok3_0(+(1, n23371_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n233710)
U62(gen_tt:mark:0':ok3_0(+(1, n27732_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n277320)
U63(gen_tt:mark:0':ok3_0(+(1, n35201_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n352010)
U64(gen_tt:mark:0':ok3_0(+(1, n43275_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n432750)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
s, active, plus, U11, U21, U31, U41, U51, U61, proper, top

They will be analysed ascendingly in the following order:
s < active
plus < active
U11 < active
U21 < active
U31 < active
U41 < active
U51 < active
U61 < active
active < top
s < proper
plus < proper
U11 < proper
U21 < proper
U31 < proper
U41 < proper
U51 < proper
U61 < proper
proper < top

(49) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
s(gen_tt:mark:0':ok3_0(+(1, n51954_0))) → *4_0, rt ∈ Ω(n519540)

Induction Base:
s(gen_tt:mark:0':ok3_0(+(1, 0)))

Induction Step:
s(gen_tt:mark:0':ok3_0(+(1, +(n51954_0, 1)))) →RΩ(1)
mark(s(gen_tt:mark:0':ok3_0(+(1, n51954_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(50) Complex Obligation (BEST)

(51) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50)
U13(gen_tt:mark:0':ok3_0(+(1, n3363_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n33630)
U14(gen_tt:mark:0':ok3_0(+(1, n7315_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n73150)
U15(gen_tt:mark:0':ok3_0(+(1, n11872_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n118720)
U16(gen_tt:mark:0':ok3_0(+(1, n15037_0))) → *4_0, rt ∈ Ω(n150370)
U22(gen_tt:mark:0':ok3_0(+(1, n16399_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n163990)
U23(gen_tt:mark:0':ok3_0(+(1, n20044_0))) → *4_0, rt ∈ Ω(n200440)
U32(gen_tt:mark:0':ok3_0(+(1, n21657_0))) → *4_0, rt ∈ Ω(n216570)
U52(gen_tt:mark:0':ok3_0(+(1, n23371_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n233710)
U62(gen_tt:mark:0':ok3_0(+(1, n27732_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n277320)
U63(gen_tt:mark:0':ok3_0(+(1, n35201_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n352010)
U64(gen_tt:mark:0':ok3_0(+(1, n43275_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n432750)
s(gen_tt:mark:0':ok3_0(+(1, n51954_0))) → *4_0, rt ∈ Ω(n519540)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
plus, active, U11, U21, U31, U41, U51, U61, proper, top

They will be analysed ascendingly in the following order:
plus < active
U11 < active
U21 < active
U31 < active
U41 < active
U51 < active
U61 < active
active < top
plus < proper
U11 < proper
U21 < proper
U31 < proper
U41 < proper
U51 < proper
U61 < proper
proper < top

(52) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
plus(gen_tt:mark:0':ok3_0(+(1, n54516_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n545160)

Induction Base:
plus(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b))

Induction Step:
plus(gen_tt:mark:0':ok3_0(+(1, +(n54516_0, 1))), gen_tt:mark:0':ok3_0(b)) →RΩ(1)
mark(plus(gen_tt:mark:0':ok3_0(+(1, n54516_0)), gen_tt:mark:0':ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(53) Complex Obligation (BEST)

(54) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50)
U13(gen_tt:mark:0':ok3_0(+(1, n3363_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n33630)
U14(gen_tt:mark:0':ok3_0(+(1, n7315_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n73150)
U15(gen_tt:mark:0':ok3_0(+(1, n11872_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n118720)
U16(gen_tt:mark:0':ok3_0(+(1, n15037_0))) → *4_0, rt ∈ Ω(n150370)
U22(gen_tt:mark:0':ok3_0(+(1, n16399_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n163990)
U23(gen_tt:mark:0':ok3_0(+(1, n20044_0))) → *4_0, rt ∈ Ω(n200440)
U32(gen_tt:mark:0':ok3_0(+(1, n21657_0))) → *4_0, rt ∈ Ω(n216570)
U52(gen_tt:mark:0':ok3_0(+(1, n23371_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n233710)
U62(gen_tt:mark:0':ok3_0(+(1, n27732_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n277320)
U63(gen_tt:mark:0':ok3_0(+(1, n35201_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n352010)
U64(gen_tt:mark:0':ok3_0(+(1, n43275_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n432750)
s(gen_tt:mark:0':ok3_0(+(1, n51954_0))) → *4_0, rt ∈ Ω(n519540)
plus(gen_tt:mark:0':ok3_0(+(1, n54516_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n545160)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
U11, active, U21, U31, U41, U51, U61, proper, top

They will be analysed ascendingly in the following order:
U11 < active
U21 < active
U31 < active
U41 < active
U51 < active
U61 < active
active < top
U11 < proper
U21 < proper
U31 < proper
U41 < proper
U51 < proper
U61 < proper
proper < top

(55) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
U11(gen_tt:mark:0':ok3_0(+(1, n60792_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n607920)

Induction Base:
U11(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c))

Induction Step:
U11(gen_tt:mark:0':ok3_0(+(1, +(n60792_0, 1))), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) →RΩ(1)
mark(U11(gen_tt:mark:0':ok3_0(+(1, n60792_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(56) Complex Obligation (BEST)

(57) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50)
U13(gen_tt:mark:0':ok3_0(+(1, n3363_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n33630)
U14(gen_tt:mark:0':ok3_0(+(1, n7315_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n73150)
U15(gen_tt:mark:0':ok3_0(+(1, n11872_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n118720)
U16(gen_tt:mark:0':ok3_0(+(1, n15037_0))) → *4_0, rt ∈ Ω(n150370)
U22(gen_tt:mark:0':ok3_0(+(1, n16399_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n163990)
U23(gen_tt:mark:0':ok3_0(+(1, n20044_0))) → *4_0, rt ∈ Ω(n200440)
U32(gen_tt:mark:0':ok3_0(+(1, n21657_0))) → *4_0, rt ∈ Ω(n216570)
U52(gen_tt:mark:0':ok3_0(+(1, n23371_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n233710)
U62(gen_tt:mark:0':ok3_0(+(1, n27732_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n277320)
U63(gen_tt:mark:0':ok3_0(+(1, n35201_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n352010)
U64(gen_tt:mark:0':ok3_0(+(1, n43275_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n432750)
s(gen_tt:mark:0':ok3_0(+(1, n51954_0))) → *4_0, rt ∈ Ω(n519540)
plus(gen_tt:mark:0':ok3_0(+(1, n54516_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n545160)
U11(gen_tt:mark:0':ok3_0(+(1, n60792_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n607920)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
U21, active, U31, U41, U51, U61, proper, top

They will be analysed ascendingly in the following order:
U21 < active
U31 < active
U41 < active
U51 < active
U61 < active
active < top
U21 < proper
U31 < proper
U41 < proper
U51 < proper
U61 < proper
proper < top

(58) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
U21(gen_tt:mark:0':ok3_0(+(1, n70845_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n708450)

Induction Base:
U21(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b))

Induction Step:
U21(gen_tt:mark:0':ok3_0(+(1, +(n70845_0, 1))), gen_tt:mark:0':ok3_0(b)) →RΩ(1)
mark(U21(gen_tt:mark:0':ok3_0(+(1, n70845_0)), gen_tt:mark:0':ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(59) Complex Obligation (BEST)

(60) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50)
U13(gen_tt:mark:0':ok3_0(+(1, n3363_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n33630)
U14(gen_tt:mark:0':ok3_0(+(1, n7315_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n73150)
U15(gen_tt:mark:0':ok3_0(+(1, n11872_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n118720)
U16(gen_tt:mark:0':ok3_0(+(1, n15037_0))) → *4_0, rt ∈ Ω(n150370)
U22(gen_tt:mark:0':ok3_0(+(1, n16399_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n163990)
U23(gen_tt:mark:0':ok3_0(+(1, n20044_0))) → *4_0, rt ∈ Ω(n200440)
U32(gen_tt:mark:0':ok3_0(+(1, n21657_0))) → *4_0, rt ∈ Ω(n216570)
U52(gen_tt:mark:0':ok3_0(+(1, n23371_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n233710)
U62(gen_tt:mark:0':ok3_0(+(1, n27732_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n277320)
U63(gen_tt:mark:0':ok3_0(+(1, n35201_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n352010)
U64(gen_tt:mark:0':ok3_0(+(1, n43275_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n432750)
s(gen_tt:mark:0':ok3_0(+(1, n51954_0))) → *4_0, rt ∈ Ω(n519540)
plus(gen_tt:mark:0':ok3_0(+(1, n54516_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n545160)
U11(gen_tt:mark:0':ok3_0(+(1, n60792_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n607920)
U21(gen_tt:mark:0':ok3_0(+(1, n70845_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n708450)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
U31, active, U41, U51, U61, proper, top

They will be analysed ascendingly in the following order:
U31 < active
U41 < active
U51 < active
U61 < active
active < top
U31 < proper
U41 < proper
U51 < proper
U61 < proper
proper < top

(61) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
U31(gen_tt:mark:0':ok3_0(+(1, n77628_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n776280)

Induction Base:
U31(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b))

Induction Step:
U31(gen_tt:mark:0':ok3_0(+(1, +(n77628_0, 1))), gen_tt:mark:0':ok3_0(b)) →RΩ(1)
mark(U31(gen_tt:mark:0':ok3_0(+(1, n77628_0)), gen_tt:mark:0':ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(62) Complex Obligation (BEST)

(63) Obligation:

TRS:
Rules:
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0')) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0')) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U12 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNatKind :: tt:mark:0':ok → tt:mark:0':ok
U13 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U14 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U15 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
U16 :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U22 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U23 :: tt:mark:0':ok → tt:mark:0':ok
U31 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U32 :: tt:mark:0':ok → tt:mark:0':ok
U41 :: tt:mark:0':ok → tt:mark:0':ok
U51 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U52 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U61 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U62 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U63 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
U64 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
U12(gen_tt:mark:0':ok3_0(+(1, n5_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50)
U13(gen_tt:mark:0':ok3_0(+(1, n3363_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n33630)
U14(gen_tt:mark:0':ok3_0(+(1, n7315_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n73150)
U15(gen_tt:mark:0':ok3_0(+(1, n11872_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n118720)
U16(gen_tt:mark:0':ok3_0(+(1, n15037_0))) → *4_0, rt ∈ Ω(n150370)
U22(gen_tt:mark:0':ok3_0(+(1, n16399_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n163990)
U23(gen_tt:mark:0':ok3_0(+(1, n20044_0))) → *4_0, rt ∈ Ω(n200440)
U32(gen_tt:mark:0':ok3_0(+(1, n21657_0))) → *4_0, rt ∈ Ω(n216570)
U52(gen_tt:mark:0':ok3_0(+(1, n23371_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n233710)
U62(gen_tt:mark:0':ok3_0(+(1, n27732_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n277320)
U63(gen_tt:mark:0':ok3_0(+(1, n35201_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n352010)
U64(gen_tt:mark:0':ok3_0(+(1, n43275_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n432750)
s(gen_tt:mark:0':ok3_0(+(1, n51954_0))) → *4_0, rt ∈ Ω(n519540)
plus(gen_tt:mark:0':ok3_0(+(1, n54516_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n545160)
U11(gen_tt:mark:0':ok3_0(+(1, n60792_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n607920)
U21(gen_tt:mark:0':ok3_0(+(1, n70845_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n708450)
U31(gen_tt:mark:0':ok3_0(+(1, n77628_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n776280)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
U41, active, U51, U61, proper, top

They will be analysed ascendingly in the following order:
U41 < active
U51 < active
U61 < active
active < top
U41 < proper
U51 < proper
U61 < proper
proper < top

(64) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
U41(gen_tt:mark:0':ok3_0(+(1, n84715_0))) → *4_0, rt ∈ Ω(n847150)

Induction Base:
U41(gen_tt:mark:0':ok3_0(+(1, 0)))

Induction Step:
U41(gen_tt:mark:0':ok3_0(+(1, +(n84715_0, 1)))) →RΩ(1)
mark(U41(gen_tt:mark:0':ok3_0(+(1, n84715_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(65) Complex Obligation (BEST)

(66) Obligation:

TRS:
Rules:
active(U11(tt, V1</