```* Step 1: Bounds WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
U11(mark(X)) -> mark(U11(X))
U11(ok(X)) -> ok(U11(X))
U12(mark(X)) -> mark(U12(X))
U12(ok(X)) -> ok(U12(X))
__(X1,mark(X2)) -> mark(__(X1,X2))
__(mark(X1),X2) -> mark(__(X1,X2))
__(ok(X1),ok(X2)) -> ok(__(X1,X2))
isNePal(mark(X)) -> mark(isNePal(X))
isNePal(ok(X)) -> ok(isNePal(X))
proper(nil()) -> ok(nil())
proper(tt()) -> ok(tt())
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
- Signature:
{U11/1,U12/1,__/2,isNePal/1,proper/1,top/1} / {active/1,mark/1,nil/0,ok/1,tt/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {U11,U12,__,isNePal,proper,top} and constructors {active
,mark,nil,ok,tt}
+ Applied Processor:
Bounds {initialAutomaton = minimal, enrichment = match}
+ Details:
The problem is match-bounded by 2.
The enriched problem is compatible with follwoing automaton.
U11_0(2) -> 1
U11_1(2) -> 3
U12_0(2) -> 1
U12_1(2) -> 3
___0(2,2) -> 1
___1(2,2) -> 3
active_0(2) -> 2
active_1(2) -> 4
active_2(3) -> 5
isNePal_0(2) -> 1
isNePal_1(2) -> 3
mark_0(2) -> 2
mark_1(3) -> 1
mark_1(3) -> 3
nil_0() -> 2
nil_1() -> 3
ok_0(2) -> 2
ok_1(3) -> 1
ok_1(3) -> 3
ok_1(3) -> 4
proper_0(2) -> 1
proper_1(2) -> 4
top_0(2) -> 1
top_1(4) -> 1
top_2(5) -> 1
tt_0() -> 2
tt_1() -> 3
* Step 2: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
U11(mark(X)) -> mark(U11(X))
U11(ok(X)) -> ok(U11(X))
U12(mark(X)) -> mark(U12(X))
U12(ok(X)) -> ok(U12(X))
__(X1,mark(X2)) -> mark(__(X1,X2))
__(mark(X1),X2) -> mark(__(X1,X2))
__(ok(X1),ok(X2)) -> ok(__(X1,X2))
isNePal(mark(X)) -> mark(isNePal(X))
isNePal(ok(X)) -> ok(isNePal(X))
proper(nil()) -> ok(nil())
proper(tt()) -> ok(tt())
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
- Signature:
{U11/1,U12/1,__/2,isNePal/1,proper/1,top/1} / {active/1,mark/1,nil/0,ok/1,tt/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {U11,U12,__,isNePal,proper,top} and constructors {active
,mark,nil,ok,tt}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))
```