(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U61(tt) → U62(isPalListKind)
U62(tt) → U63(isQid)
U63(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U61(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPal → tt
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Rewrite Strategy: FULL
(1) InfiniteLowerBoundProof (EQUIVALENT transformation)
The loop following loop proves infinite runtime complexity:
The rewrite sequence
U21(tt) →+ U25(U21(tt))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [ ].
The result substitution is [ ].
(2) BOUNDS(INF, INF)