### (0) Obligation:

The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1).

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(X1, X2, X3, X4)) → U11(active(X1), X2, X3, X4)
active(U12(X1, X2)) → U12(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(snd(X)) → snd(active(X))
active(and(X1, X2)) → and(active(X1), X2)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3, X4) → mark(U11(X1, X2, X3, X4))
U12(mark(X1), X2) → mark(U12(X1, X2))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
snd(mark(X)) → mark(snd(X))
and(mark(X1), X2) → mark(and(X1, X2))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3, X4)) → U11(proper(X1), proper(X2), proper(X3), proper(X4))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U11(X1, X2, X3, X4))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
snd(ok(X)) → ok(snd(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: FULL

### (1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)

The following defined symbols can occur below the 0th argument of top: proper, active
The following defined symbols can occur below the 0th argument of proper: proper, active
The following defined symbols can occur below the 0th argument of active: proper, active

Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(X1, X2, X3, X4)) → U11(active(X1), X2, X3, X4)
active(U12(X1, X2)) → U12(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(snd(X)) → snd(active(X))
active(and(X1, X2)) → and(active(X1), X2)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
proper(U11(X1, X2, X3, X4)) → U11(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))

### (2) Obligation:

The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1).

The TRS R consists of the following rules:

top(ok(X)) → top(active(X))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
tail(ok(X)) → ok(tail(X))
snd(ok(X)) → ok(snd(X))
pair(X1, mark(X2)) → mark(pair(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
snd(mark(X)) → mark(snd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
U11(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U11(X1, X2, X3, X4))
proper(tt) → ok(tt)
proper(nil) → ok(nil)
U11(mark(X1), X2, X3, X4) → mark(U11(X1, X2, X3, X4))
take(X1, mark(X2)) → mark(take(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
fst(mark(X)) → mark(fst(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
tail(mark(X)) → mark(tail(X))
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
fst(ok(X)) → ok(fst(X))
proper(0) → ok(0)
cons(mark(X1), X2) → mark(cons(X1, X2))
top(mark(X)) → top(proper(X))

Rewrite Strategy: FULL

### (3) RcToIrcProof (BOTH BOUNDS(ID, ID) transformation)

Converted rc-obligation to irc-obligation.

As the TRS is a non-duplicating overlay system, we have rc = irc.

### (4) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).

The TRS R consists of the following rules:

top(ok(X)) → top(active(X))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
tail(ok(X)) → ok(tail(X))
snd(ok(X)) → ok(snd(X))
pair(X1, mark(X2)) → mark(pair(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
snd(mark(X)) → mark(snd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
U11(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U11(X1, X2, X3, X4))
proper(tt) → ok(tt)
proper(nil) → ok(nil)
U11(mark(X1), X2, X3, X4) → mark(U11(X1, X2, X3, X4))
take(X1, mark(X2)) → mark(take(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
fst(mark(X)) → mark(fst(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
tail(mark(X)) → mark(tail(X))
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
fst(ok(X)) → ok(fst(X))
proper(0) → ok(0)
cons(mark(X1), X2) → mark(cons(X1, X2))
top(mark(X)) → top(proper(X))

Rewrite Strategy: INNERMOST

### (5) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)

A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2.

The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
transitions:
ok0(0) → 0
active0(0) → 0
mark0(0) → 0
tt0() → 0
nil0() → 0
00() → 0
top0(0) → 1
afterNth0(0, 0) → 2
take0(0, 0) → 3
cons0(0, 0) → 4
tail0(0) → 5
snd0(0) → 6
pair0(0, 0) → 7
and0(0, 0) → 8
sel0(0, 0) → 9
splitAt0(0, 0) → 10
U110(0, 0, 0, 0) → 11
proper0(0) → 12
U120(0, 0) → 14
natsFrom0(0) → 15
fst0(0) → 16
s0(0) → 17
active1(0) → 18
top1(18) → 1
afterNth1(0, 0) → 19
mark1(19) → 2
take1(0, 0) → 20
mark1(20) → 3
cons1(0, 0) → 21
ok1(21) → 4
tail1(0) → 22
ok1(22) → 5
snd1(0) → 23
ok1(23) → 6
pair1(0, 0) → 24
mark1(24) → 7
and1(0, 0) → 25
ok1(25) → 8
snd1(0) → 26
mark1(26) → 6
take1(0, 0) → 27
ok1(27) → 3
sel1(0, 0) → 28
ok1(28) → 9
splitAt1(0, 0) → 29
mark1(29) → 10
sel1(0, 0) → 30
mark1(30) → 9
U111(0, 0, 0, 0) → 31
ok1(31) → 11
tt1() → 32
ok1(32) → 12
nil1() → 33
ok1(33) → 12
U111(0, 0, 0, 0) → 34
mark1(34) → 11
ok1(35) → 13
pair1(0, 0) → 36
ok1(36) → 7
and1(0, 0) → 37
mark1(37) → 8
mark1(38) → 13
U121(0, 0) → 39
ok1(39) → 14
U121(0, 0) → 40
mark1(40) → 14
natsFrom1(0) → 41
mark1(41) → 15
natsFrom1(0) → 42
ok1(42) → 15
fst1(0) → 43
mark1(43) → 16
afterNth1(0, 0) → 44
ok1(44) → 2
tail1(0) → 45
mark1(45) → 5
s1(0) → 46
ok1(46) → 17
s1(0) → 47
mark1(47) → 17
splitAt1(0, 0) → 48
ok1(48) → 10
fst1(0) → 49
ok1(49) → 16
01() → 50
ok1(50) → 12
cons1(0, 0) → 51
mark1(51) → 4
proper1(0) → 52
top1(52) → 1
mark1(19) → 19
mark1(19) → 44
mark1(20) → 20
mark1(20) → 27
ok1(21) → 21
ok1(21) → 51
ok1(22) → 22
ok1(22) → 45
ok1(23) → 23
ok1(23) → 26
mark1(24) → 24
mark1(24) → 36
ok1(25) → 25
ok1(25) → 37
mark1(26) → 23
mark1(26) → 26
ok1(27) → 20
ok1(27) → 27
ok1(28) → 28
ok1(28) → 30
mark1(29) → 29
mark1(29) → 48
mark1(30) → 28
mark1(30) → 30
ok1(31) → 31
ok1(31) → 34
ok1(32) → 52
ok1(33) → 52
mark1(34) → 31
mark1(34) → 34
ok1(35) → 35
ok1(35) → 38
ok1(36) → 24
ok1(36) → 36
mark1(37) → 25
mark1(37) → 37
mark1(38) → 35
mark1(38) → 38
ok1(39) → 39
ok1(39) → 40
mark1(40) → 39
mark1(40) → 40
mark1(41) → 41
mark1(41) → 42
ok1(42) → 41
ok1(42) → 42
mark1(43) → 43
mark1(43) → 49
ok1(44) → 19
ok1(44) → 44
mark1(45) → 22
mark1(45) → 45
ok1(46) → 46
ok1(46) → 47
mark1(47) → 46
mark1(47) → 47
ok1(48) → 29
ok1(48) → 48
ok1(49) → 43
ok1(49) → 49
ok1(50) → 52
mark1(51) → 21
mark1(51) → 51
active2(32) → 53
top2(53) → 1
active2(33) → 53
active2(50) → 53