* Step 1: Bounds WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
afterNth(X1,mark(X2)) -> mark(afterNth(X1,X2))
afterNth(mark(X1),X2) -> mark(afterNth(X1,X2))
afterNth(ok(X1),ok(X2)) -> ok(afterNth(X1,X2))
cons(mark(X1),X2) -> mark(cons(X1,X2))
cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
fst(mark(X)) -> mark(fst(X))
fst(ok(X)) -> ok(fst(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
natsFrom(mark(X)) -> mark(natsFrom(X))
natsFrom(ok(X)) -> ok(natsFrom(X))
pair(X1,mark(X2)) -> mark(pair(X1,X2))
pair(mark(X1),X2) -> mark(pair(X1,X2))
pair(ok(X1),ok(X2)) -> ok(pair(X1,X2))
proper(0()) -> ok(0())
proper(nil()) -> ok(nil())
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(X1,mark(X2)) -> mark(sel(X1,X2))
sel(mark(X1),X2) -> mark(sel(X1,X2))
sel(ok(X1),ok(X2)) -> ok(sel(X1,X2))
snd(mark(X)) -> mark(snd(X))
snd(ok(X)) -> ok(snd(X))
splitAt(X1,mark(X2)) -> mark(splitAt(X1,X2))
splitAt(mark(X1),X2) -> mark(splitAt(X1,X2))
splitAt(ok(X1),ok(X2)) -> ok(splitAt(X1,X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
take(X1,mark(X2)) -> mark(take(X1,X2))
take(mark(X1),X2) -> mark(take(X1,X2))
take(ok(X1),ok(X2)) -> ok(take(X1,X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
u(mark(X1),X2,X3,X4) -> mark(u(X1,X2,X3,X4))
u(ok(X1),ok(X2),ok(X3),ok(X4)) -> ok(u(X1,X2,X3,X4))
- Signature:
{afterNth/2,cons/2,fst/1,head/1,natsFrom/1,pair/2,proper/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2,top/1
,u/4} / {0/0,active/1,mark/1,nil/0,ok/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {afterNth,cons,fst,head,natsFrom,pair,proper,s,sel,snd
,splitAt,tail,take,top,u} and constructors {0,active,mark,nil,ok}
+ Applied Processor:
Bounds {initialAutomaton = minimal, enrichment = match}
+ Details:
The problem is match-bounded by 2.
The enriched problem is compatible with follwoing automaton.
0_0() -> 2
0_1() -> 3
active_0(2) -> 2
active_1(2) -> 4
active_2(3) -> 5
afterNth_0(2,2) -> 1
afterNth_1(2,2) -> 3
cons_0(2,2) -> 1
cons_1(2,2) -> 3
fst_0(2) -> 1
fst_1(2) -> 3
head_0(2) -> 1
head_1(2) -> 3
mark_0(2) -> 2
mark_1(3) -> 1
mark_1(3) -> 3
natsFrom_0(2) -> 1
natsFrom_1(2) -> 3
nil_0() -> 2
nil_1() -> 3
ok_0(2) -> 2
ok_1(3) -> 1
ok_1(3) -> 3
ok_1(3) -> 4
pair_0(2,2) -> 1
pair_1(2,2) -> 3
proper_0(2) -> 1
proper_1(2) -> 4
s_0(2) -> 1
s_1(2) -> 3
sel_0(2,2) -> 1
sel_1(2,2) -> 3
snd_0(2) -> 1
snd_1(2) -> 3
splitAt_0(2,2) -> 1
splitAt_1(2,2) -> 3
tail_0(2) -> 1
tail_1(2) -> 3
take_0(2,2) -> 1
take_1(2,2) -> 3
top_0(2) -> 1
top_1(4) -> 1
top_2(5) -> 1
u_0(2,2,2,2) -> 1
u_1(2,2,2,2) -> 3
* Step 2: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
afterNth(X1,mark(X2)) -> mark(afterNth(X1,X2))
afterNth(mark(X1),X2) -> mark(afterNth(X1,X2))
afterNth(ok(X1),ok(X2)) -> ok(afterNth(X1,X2))
cons(mark(X1),X2) -> mark(cons(X1,X2))
cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
fst(mark(X)) -> mark(fst(X))
fst(ok(X)) -> ok(fst(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
natsFrom(mark(X)) -> mark(natsFrom(X))
natsFrom(ok(X)) -> ok(natsFrom(X))
pair(X1,mark(X2)) -> mark(pair(X1,X2))
pair(mark(X1),X2) -> mark(pair(X1,X2))
pair(ok(X1),ok(X2)) -> ok(pair(X1,X2))
proper(0()) -> ok(0())
proper(nil()) -> ok(nil())
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(X1,mark(X2)) -> mark(sel(X1,X2))
sel(mark(X1),X2) -> mark(sel(X1,X2))
sel(ok(X1),ok(X2)) -> ok(sel(X1,X2))
snd(mark(X)) -> mark(snd(X))
snd(ok(X)) -> ok(snd(X))
splitAt(X1,mark(X2)) -> mark(splitAt(X1,X2))
splitAt(mark(X1),X2) -> mark(splitAt(X1,X2))
splitAt(ok(X1),ok(X2)) -> ok(splitAt(X1,X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
take(X1,mark(X2)) -> mark(take(X1,X2))
take(mark(X1),X2) -> mark(take(X1,X2))
take(ok(X1),ok(X2)) -> ok(take(X1,X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
u(mark(X1),X2,X3,X4) -> mark(u(X1,X2,X3,X4))
u(ok(X1),ok(X2),ok(X3),ok(X4)) -> ok(u(X1,X2,X3,X4))
- Signature:
{afterNth/2,cons/2,fst/1,head/1,natsFrom/1,pair/2,proper/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2,top/1
,u/4} / {0/0,active/1,mark/1,nil/0,ok/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {afterNth,cons,fst,head,natsFrom,pair,proper,s,sel,snd
,splitAt,tail,take,top,u} and constructors {0,active,mark,nil,ok}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))