(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(0) → cons(0, n__f(n__s(n__0)))
f(s(0)) → f(p(s(0)))
p(s(X)) → X
f(X) → n__f(X)
s(X) → n__s(X)
0 → n__0
activate(n__f(X)) → f(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(X) → X
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
activate(n__f(X)) →+ f(activate(X))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / n__f(X)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(0') → cons(0', n__f(n__s(n__0)))
f(s(0')) → f(p(s(0')))
p(s(X)) → X
f(X) → n__f(X)
s(X) → n__s(X)
0' → n__0
activate(n__f(X)) → f(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0'
activate(X) → X
S is empty.
Rewrite Strategy: FULL
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
cons/1
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(0') → cons(0')
f(s(0')) → f(p(s(0')))
p(s(X)) → X
f(X) → n__f(X)
s(X) → n__s(X)
0' → n__0
activate(n__f(X)) → f(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0'
activate(X) → X
S is empty.
Rewrite Strategy: FULL
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
TRS:
Rules:
f(0') → cons(0')
f(s(0')) → f(p(s(0')))
p(s(X)) → X
f(X) → n__f(X)
s(X) → n__s(X)
0' → n__0
activate(n__f(X)) → f(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0'
activate(X) → X
Types:
f :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
0' :: cons:n__f:n__s:n__0
cons :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
s :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
p :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
n__f :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
n__s :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
n__0 :: cons:n__f:n__s:n__0
activate :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
hole_cons:n__f:n__s:n__01_1 :: cons:n__f:n__s:n__0
gen_cons:n__f:n__s:n__02_1 :: Nat → cons:n__f:n__s:n__0
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
activateThey will be analysed ascendingly in the following order:
f < activate
(10) Obligation:
TRS:
Rules:
f(
0') →
cons(
0')
f(
s(
0')) →
f(
p(
s(
0')))
p(
s(
X)) →
Xf(
X) →
n__f(
X)
s(
X) →
n__s(
X)
0' →
n__0activate(
n__f(
X)) →
f(
activate(
X))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
n__0) →
0'activate(
X) →
XTypes:
f :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
0' :: cons:n__f:n__s:n__0
cons :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
s :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
p :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
n__f :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
n__s :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
n__0 :: cons:n__f:n__s:n__0
activate :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
hole_cons:n__f:n__s:n__01_1 :: cons:n__f:n__s:n__0
gen_cons:n__f:n__s:n__02_1 :: Nat → cons:n__f:n__s:n__0
Generator Equations:
gen_cons:n__f:n__s:n__02_1(0) ⇔ n__0
gen_cons:n__f:n__s:n__02_1(+(x, 1)) ⇔ n__f(gen_cons:n__f:n__s:n__02_1(x))
The following defined symbols remain to be analysed:
f, activate
They will be analysed ascendingly in the following order:
f < activate
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(12) Obligation:
TRS:
Rules:
f(
0') →
cons(
0')
f(
s(
0')) →
f(
p(
s(
0')))
p(
s(
X)) →
Xf(
X) →
n__f(
X)
s(
X) →
n__s(
X)
0' →
n__0activate(
n__f(
X)) →
f(
activate(
X))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
n__0) →
0'activate(
X) →
XTypes:
f :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
0' :: cons:n__f:n__s:n__0
cons :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
s :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
p :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
n__f :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
n__s :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
n__0 :: cons:n__f:n__s:n__0
activate :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
hole_cons:n__f:n__s:n__01_1 :: cons:n__f:n__s:n__0
gen_cons:n__f:n__s:n__02_1 :: Nat → cons:n__f:n__s:n__0
Generator Equations:
gen_cons:n__f:n__s:n__02_1(0) ⇔ n__0
gen_cons:n__f:n__s:n__02_1(+(x, 1)) ⇔ n__f(gen_cons:n__f:n__s:n__02_1(x))
The following defined symbols remain to be analysed:
activate
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
activate(
gen_cons:n__f:n__s:n__02_1(
n12_1)) →
gen_cons:n__f:n__s:n__02_1(
n12_1), rt ∈ Ω(1 + n12
1)
Induction Base:
activate(gen_cons:n__f:n__s:n__02_1(0)) →RΩ(1)
gen_cons:n__f:n__s:n__02_1(0)
Induction Step:
activate(gen_cons:n__f:n__s:n__02_1(+(n12_1, 1))) →RΩ(1)
f(activate(gen_cons:n__f:n__s:n__02_1(n12_1))) →IH
f(gen_cons:n__f:n__s:n__02_1(c13_1)) →RΩ(1)
n__f(gen_cons:n__f:n__s:n__02_1(n12_1))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
f(
0') →
cons(
0')
f(
s(
0')) →
f(
p(
s(
0')))
p(
s(
X)) →
Xf(
X) →
n__f(
X)
s(
X) →
n__s(
X)
0' →
n__0activate(
n__f(
X)) →
f(
activate(
X))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
n__0) →
0'activate(
X) →
XTypes:
f :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
0' :: cons:n__f:n__s:n__0
cons :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
s :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
p :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
n__f :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
n__s :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
n__0 :: cons:n__f:n__s:n__0
activate :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
hole_cons:n__f:n__s:n__01_1 :: cons:n__f:n__s:n__0
gen_cons:n__f:n__s:n__02_1 :: Nat → cons:n__f:n__s:n__0
Lemmas:
activate(gen_cons:n__f:n__s:n__02_1(n12_1)) → gen_cons:n__f:n__s:n__02_1(n12_1), rt ∈ Ω(1 + n121)
Generator Equations:
gen_cons:n__f:n__s:n__02_1(0) ⇔ n__0
gen_cons:n__f:n__s:n__02_1(+(x, 1)) ⇔ n__f(gen_cons:n__f:n__s:n__02_1(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
activate(gen_cons:n__f:n__s:n__02_1(n12_1)) → gen_cons:n__f:n__s:n__02_1(n12_1), rt ∈ Ω(1 + n121)
(17) BOUNDS(n^1, INF)
(18) Obligation:
TRS:
Rules:
f(
0') →
cons(
0')
f(
s(
0')) →
f(
p(
s(
0')))
p(
s(
X)) →
Xf(
X) →
n__f(
X)
s(
X) →
n__s(
X)
0' →
n__0activate(
n__f(
X)) →
f(
activate(
X))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
n__0) →
0'activate(
X) →
XTypes:
f :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
0' :: cons:n__f:n__s:n__0
cons :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
s :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
p :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
n__f :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
n__s :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
n__0 :: cons:n__f:n__s:n__0
activate :: cons:n__f:n__s:n__0 → cons:n__f:n__s:n__0
hole_cons:n__f:n__s:n__01_1 :: cons:n__f:n__s:n__0
gen_cons:n__f:n__s:n__02_1 :: Nat → cons:n__f:n__s:n__0
Lemmas:
activate(gen_cons:n__f:n__s:n__02_1(n12_1)) → gen_cons:n__f:n__s:n__02_1(n12_1), rt ∈ Ω(1 + n121)
Generator Equations:
gen_cons:n__f:n__s:n__02_1(0) ⇔ n__0
gen_cons:n__f:n__s:n__02_1(+(x, 1)) ⇔ n__f(gen_cons:n__f:n__s:n__02_1(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
activate(gen_cons:n__f:n__s:n__02_1(n12_1)) → gen_cons:n__f:n__s:n__02_1(n12_1), rt ∈ Ω(1 + n121)
(20) BOUNDS(n^1, INF)