(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
fact(mark(X)) →+ mark(fact(X))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / mark(X)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0'), prod(X, fact(p(X)))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0', X)) → mark(0')
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0')) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
active(fact(X)) → mark(if(zero(X), s(0'), prod(X, fact(p(X)))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0', X)) → mark(0')
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0')) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:true:false:ok → 0':mark:true:false:ok
fact :: 0':mark:true:false:ok → 0':mark:true:false:ok
mark :: 0':mark:true:false:ok → 0':mark:true:false:ok
if :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
zero :: 0':mark:true:false:ok → 0':mark:true:false:ok
s :: 0':mark:true:false:ok → 0':mark:true:false:ok
0' :: 0':mark:true:false:ok
prod :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
p :: 0':mark:true:false:ok → 0':mark:true:false:ok
add :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
true :: 0':mark:true:false:ok
false :: 0':mark:true:false:ok
proper :: 0':mark:true:false:ok → 0':mark:true:false:ok
ok :: 0':mark:true:false:ok → 0':mark:true:false:ok
top :: 0':mark:true:false:ok → top
hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok
hole_top2_0 :: top
gen_0':mark:true:false:ok3_0 :: Nat → 0':mark:true:false:ok

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
active, if, zero, s, prod, fact, p, add, proper, top

They will be analysed ascendingly in the following order:
if < active
zero < active
s < active
prod < active
fact < active
p < active
add < active
active < top
if < proper
zero < proper
s < proper
prod < proper
fact < proper
p < proper
add < proper
proper < top

(8) Obligation:

TRS:
Rules:
active(fact(X)) → mark(if(zero(X), s(0'), prod(X, fact(p(X)))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0', X)) → mark(0')
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0')) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:true:false:ok → 0':mark:true:false:ok
fact :: 0':mark:true:false:ok → 0':mark:true:false:ok
mark :: 0':mark:true:false:ok → 0':mark:true:false:ok
if :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
zero :: 0':mark:true:false:ok → 0':mark:true:false:ok
s :: 0':mark:true:false:ok → 0':mark:true:false:ok
0' :: 0':mark:true:false:ok
prod :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
p :: 0':mark:true:false:ok → 0':mark:true:false:ok
add :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
true :: 0':mark:true:false:ok
false :: 0':mark:true:false:ok
proper :: 0':mark:true:false:ok → 0':mark:true:false:ok
ok :: 0':mark:true:false:ok → 0':mark:true:false:ok
top :: 0':mark:true:false:ok → top
hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok
hole_top2_0 :: top
gen_0':mark:true:false:ok3_0 :: Nat → 0':mark:true:false:ok

Generator Equations:
gen_0':mark:true:false:ok3_0(0) ⇔ 0'
gen_0':mark:true:false:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:true:false:ok3_0(x))

The following defined symbols remain to be analysed:
if, active, zero, s, prod, fact, p, add, proper, top

They will be analysed ascendingly in the following order:
if < active
zero < active
s < active
prod < active
fact < active
p < active
add < active
active < top
if < proper
zero < proper
s < proper
prod < proper
fact < proper
p < proper
add < proper
proper < top

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)

Induction Base:
if(gen_0':mark:true:false:ok3_0(+(1, 0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c))

Induction Step:
if(gen_0':mark:true:false:ok3_0(+(1, +(n5_0, 1))), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) →RΩ(1)
mark(if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
active(fact(X)) → mark(if(zero(X), s(0'), prod(X, fact(p(X)))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0', X)) → mark(0')
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0')) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:true:false:ok → 0':mark:true:false:ok
fact :: 0':mark:true:false:ok → 0':mark:true:false:ok
mark :: 0':mark:true:false:ok → 0':mark:true:false:ok
if :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
zero :: 0':mark:true:false:ok → 0':mark:true:false:ok
s :: 0':mark:true:false:ok → 0':mark:true:false:ok
0' :: 0':mark:true:false:ok
prod :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
p :: 0':mark:true:false:ok → 0':mark:true:false:ok
add :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
true :: 0':mark:true:false:ok
false :: 0':mark:true:false:ok
proper :: 0':mark:true:false:ok → 0':mark:true:false:ok
ok :: 0':mark:true:false:ok → 0':mark:true:false:ok
top :: 0':mark:true:false:ok → top
hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok
hole_top2_0 :: top
gen_0':mark:true:false:ok3_0 :: Nat → 0':mark:true:false:ok

Lemmas:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_0':mark:true:false:ok3_0(0) ⇔ 0'
gen_0':mark:true:false:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:true:false:ok3_0(x))

The following defined symbols remain to be analysed:
zero, active, s, prod, fact, p, add, proper, top

They will be analysed ascendingly in the following order:
zero < active
s < active
prod < active
fact < active
p < active
add < active
active < top
zero < proper
s < proper
prod < proper
fact < proper
p < proper
add < proper
proper < top

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
zero(gen_0':mark:true:false:ok3_0(+(1, n1903_0))) → *4_0, rt ∈ Ω(n19030)

Induction Base:
zero(gen_0':mark:true:false:ok3_0(+(1, 0)))

Induction Step:
zero(gen_0':mark:true:false:ok3_0(+(1, +(n1903_0, 1)))) →RΩ(1)
mark(zero(gen_0':mark:true:false:ok3_0(+(1, n1903_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(13) Complex Obligation (BEST)

(14) Obligation:

TRS:
Rules:
active(fact(X)) → mark(if(zero(X), s(0'), prod(X, fact(p(X)))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0', X)) → mark(0')
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0')) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:true:false:ok → 0':mark:true:false:ok
fact :: 0':mark:true:false:ok → 0':mark:true:false:ok
mark :: 0':mark:true:false:ok → 0':mark:true:false:ok
if :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
zero :: 0':mark:true:false:ok → 0':mark:true:false:ok
s :: 0':mark:true:false:ok → 0':mark:true:false:ok
0' :: 0':mark:true:false:ok
prod :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
p :: 0':mark:true:false:ok → 0':mark:true:false:ok
add :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
true :: 0':mark:true:false:ok
false :: 0':mark:true:false:ok
proper :: 0':mark:true:false:ok → 0':mark:true:false:ok
ok :: 0':mark:true:false:ok → 0':mark:true:false:ok
top :: 0':mark:true:false:ok → top
hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok
hole_top2_0 :: top
gen_0':mark:true:false:ok3_0 :: Nat → 0':mark:true:false:ok

Lemmas:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
zero(gen_0':mark:true:false:ok3_0(+(1, n1903_0))) → *4_0, rt ∈ Ω(n19030)

Generator Equations:
gen_0':mark:true:false:ok3_0(0) ⇔ 0'
gen_0':mark:true:false:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:true:false:ok3_0(x))

The following defined symbols remain to be analysed:
s, active, prod, fact, p, add, proper, top

They will be analysed ascendingly in the following order:
s < active
prod < active
fact < active
p < active
add < active
active < top
s < proper
prod < proper
fact < proper
p < proper
add < proper
proper < top

(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
s(gen_0':mark:true:false:ok3_0(+(1, n2510_0))) → *4_0, rt ∈ Ω(n25100)

Induction Base:
s(gen_0':mark:true:false:ok3_0(+(1, 0)))

Induction Step:
s(gen_0':mark:true:false:ok3_0(+(1, +(n2510_0, 1)))) →RΩ(1)
mark(s(gen_0':mark:true:false:ok3_0(+(1, n2510_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(16) Complex Obligation (BEST)

(17) Obligation:

TRS:
Rules:
active(fact(X)) → mark(if(zero(X), s(0'), prod(X, fact(p(X)))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0', X)) → mark(0')
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0')) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:true:false:ok → 0':mark:true:false:ok
fact :: 0':mark:true:false:ok → 0':mark:true:false:ok
mark :: 0':mark:true:false:ok → 0':mark:true:false:ok
if :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
zero :: 0':mark:true:false:ok → 0':mark:true:false:ok
s :: 0':mark:true:false:ok → 0':mark:true:false:ok
0' :: 0':mark:true:false:ok
prod :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
p :: 0':mark:true:false:ok → 0':mark:true:false:ok
add :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
true :: 0':mark:true:false:ok
false :: 0':mark:true:false:ok
proper :: 0':mark:true:false:ok → 0':mark:true:false:ok
ok :: 0':mark:true:false:ok → 0':mark:true:false:ok
top :: 0':mark:true:false:ok → top
hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok
hole_top2_0 :: top
gen_0':mark:true:false:ok3_0 :: Nat → 0':mark:true:false:ok

Lemmas:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
zero(gen_0':mark:true:false:ok3_0(+(1, n1903_0))) → *4_0, rt ∈ Ω(n19030)
s(gen_0':mark:true:false:ok3_0(+(1, n2510_0))) → *4_0, rt ∈ Ω(n25100)

Generator Equations:
gen_0':mark:true:false:ok3_0(0) ⇔ 0'
gen_0':mark:true:false:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:true:false:ok3_0(x))

The following defined symbols remain to be analysed:
prod, active, fact, p, add, proper, top

They will be analysed ascendingly in the following order:
prod < active
fact < active
p < active
add < active
active < top
prod < proper
fact < proper
p < proper
add < proper
proper < top

(18) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
prod(gen_0':mark:true:false:ok3_0(+(1, n3218_0)), gen_0':mark:true:false:ok3_0(b)) → *4_0, rt ∈ Ω(n32180)

Induction Base:
prod(gen_0':mark:true:false:ok3_0(+(1, 0)), gen_0':mark:true:false:ok3_0(b))

Induction Step:
prod(gen_0':mark:true:false:ok3_0(+(1, +(n3218_0, 1))), gen_0':mark:true:false:ok3_0(b)) →RΩ(1)
mark(prod(gen_0':mark:true:false:ok3_0(+(1, n3218_0)), gen_0':mark:true:false:ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(19) Complex Obligation (BEST)

(20) Obligation:

TRS:
Rules:
active(fact(X)) → mark(if(zero(X), s(0'), prod(X, fact(p(X)))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0', X)) → mark(0')
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0')) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:true:false:ok → 0':mark:true:false:ok
fact :: 0':mark:true:false:ok → 0':mark:true:false:ok
mark :: 0':mark:true:false:ok → 0':mark:true:false:ok
if :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
zero :: 0':mark:true:false:ok → 0':mark:true:false:ok
s :: 0':mark:true:false:ok → 0':mark:true:false:ok
0' :: 0':mark:true:false:ok
prod :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
p :: 0':mark:true:false:ok → 0':mark:true:false:ok
add :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
true :: 0':mark:true:false:ok
false :: 0':mark:true:false:ok
proper :: 0':mark:true:false:ok → 0':mark:true:false:ok
ok :: 0':mark:true:false:ok → 0':mark:true:false:ok
top :: 0':mark:true:false:ok → top
hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok
hole_top2_0 :: top
gen_0':mark:true:false:ok3_0 :: Nat → 0':mark:true:false:ok

Lemmas:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
zero(gen_0':mark:true:false:ok3_0(+(1, n1903_0))) → *4_0, rt ∈ Ω(n19030)
s(gen_0':mark:true:false:ok3_0(+(1, n2510_0))) → *4_0, rt ∈ Ω(n25100)
prod(gen_0':mark:true:false:ok3_0(+(1, n3218_0)), gen_0':mark:true:false:ok3_0(b)) → *4_0, rt ∈ Ω(n32180)

Generator Equations:
gen_0':mark:true:false:ok3_0(0) ⇔ 0'
gen_0':mark:true:false:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:true:false:ok3_0(x))

The following defined symbols remain to be analysed:
fact, active, p, add, proper, top

They will be analysed ascendingly in the following order:
fact < active
p < active
add < active
active < top
fact < proper
p < proper
add < proper
proper < top

(21) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
fact(gen_0':mark:true:false:ok3_0(+(1, n5332_0))) → *4_0, rt ∈ Ω(n53320)

Induction Base:
fact(gen_0':mark:true:false:ok3_0(+(1, 0)))

Induction Step:
fact(gen_0':mark:true:false:ok3_0(+(1, +(n5332_0, 1)))) →RΩ(1)
mark(fact(gen_0':mark:true:false:ok3_0(+(1, n5332_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(22) Complex Obligation (BEST)

(23) Obligation:

TRS:
Rules:
active(fact(X)) → mark(if(zero(X), s(0'), prod(X, fact(p(X)))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0', X)) → mark(0')
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0')) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:true:false:ok → 0':mark:true:false:ok
fact :: 0':mark:true:false:ok → 0':mark:true:false:ok
mark :: 0':mark:true:false:ok → 0':mark:true:false:ok
if :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
zero :: 0':mark:true:false:ok → 0':mark:true:false:ok
s :: 0':mark:true:false:ok → 0':mark:true:false:ok
0' :: 0':mark:true:false:ok
prod :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
p :: 0':mark:true:false:ok → 0':mark:true:false:ok
add :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
true :: 0':mark:true:false:ok
false :: 0':mark:true:false:ok
proper :: 0':mark:true:false:ok → 0':mark:true:false:ok
ok :: 0':mark:true:false:ok → 0':mark:true:false:ok
top :: 0':mark:true:false:ok → top
hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok
hole_top2_0 :: top
gen_0':mark:true:false:ok3_0 :: Nat → 0':mark:true:false:ok

Lemmas:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
zero(gen_0':mark:true:false:ok3_0(+(1, n1903_0))) → *4_0, rt ∈ Ω(n19030)
s(gen_0':mark:true:false:ok3_0(+(1, n2510_0))) → *4_0, rt ∈ Ω(n25100)
prod(gen_0':mark:true:false:ok3_0(+(1, n3218_0)), gen_0':mark:true:false:ok3_0(b)) → *4_0, rt ∈ Ω(n32180)
fact(gen_0':mark:true:false:ok3_0(+(1, n5332_0))) → *4_0, rt ∈ Ω(n53320)

Generator Equations:
gen_0':mark:true:false:ok3_0(0) ⇔ 0'
gen_0':mark:true:false:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:true:false:ok3_0(x))

The following defined symbols remain to be analysed:
p, active, add, proper, top

They will be analysed ascendingly in the following order:
p < active
add < active
active < top
p < proper
add < proper
proper < top

(24) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
p(gen_0':mark:true:false:ok3_0(+(1, n6291_0))) → *4_0, rt ∈ Ω(n62910)

Induction Base:
p(gen_0':mark:true:false:ok3_0(+(1, 0)))

Induction Step:
p(gen_0':mark:true:false:ok3_0(+(1, +(n6291_0, 1)))) →RΩ(1)
mark(p(gen_0':mark:true:false:ok3_0(+(1, n6291_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(25) Complex Obligation (BEST)

(26) Obligation:

TRS:
Rules:
active(fact(X)) → mark(if(zero(X), s(0'), prod(X, fact(p(X)))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0', X)) → mark(0')
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0')) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:true:false:ok → 0':mark:true:false:ok
fact :: 0':mark:true:false:ok → 0':mark:true:false:ok
mark :: 0':mark:true:false:ok → 0':mark:true:false:ok
if :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
zero :: 0':mark:true:false:ok → 0':mark:true:false:ok
s :: 0':mark:true:false:ok → 0':mark:true:false:ok
0' :: 0':mark:true:false:ok
prod :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
p :: 0':mark:true:false:ok → 0':mark:true:false:ok
add :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
true :: 0':mark:true:false:ok
false :: 0':mark:true:false:ok
proper :: 0':mark:true:false:ok → 0':mark:true:false:ok
ok :: 0':mark:true:false:ok → 0':mark:true:false:ok
top :: 0':mark:true:false:ok → top
hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok
hole_top2_0 :: top
gen_0':mark:true:false:ok3_0 :: Nat → 0':mark:true:false:ok

Lemmas:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
zero(gen_0':mark:true:false:ok3_0(+(1, n1903_0))) → *4_0, rt ∈ Ω(n19030)
s(gen_0':mark:true:false:ok3_0(+(1, n2510_0))) → *4_0, rt ∈ Ω(n25100)
prod(gen_0':mark:true:false:ok3_0(+(1, n3218_0)), gen_0':mark:true:false:ok3_0(b)) → *4_0, rt ∈ Ω(n32180)
fact(gen_0':mark:true:false:ok3_0(+(1, n5332_0))) → *4_0, rt ∈ Ω(n53320)
p(gen_0':mark:true:false:ok3_0(+(1, n6291_0))) → *4_0, rt ∈ Ω(n62910)

Generator Equations:
gen_0':mark:true:false:ok3_0(0) ⇔ 0'
gen_0':mark:true:false:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:true:false:ok3_0(x))

The following defined symbols remain to be analysed:
add, active, proper, top

They will be analysed ascendingly in the following order:
add < active
active < top
add < proper
proper < top

(27) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
add(gen_0':mark:true:false:ok3_0(+(1, n7351_0)), gen_0':mark:true:false:ok3_0(b)) → *4_0, rt ∈ Ω(n73510)

Induction Base:
add(gen_0':mark:true:false:ok3_0(+(1, 0)), gen_0':mark:true:false:ok3_0(b))

Induction Step:
add(gen_0':mark:true:false:ok3_0(+(1, +(n7351_0, 1))), gen_0':mark:true:false:ok3_0(b)) →RΩ(1)
mark(add(gen_0':mark:true:false:ok3_0(+(1, n7351_0)), gen_0':mark:true:false:ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(28) Complex Obligation (BEST)

(29) Obligation:

TRS:
Rules:
active(fact(X)) → mark(if(zero(X), s(0'), prod(X, fact(p(X)))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0', X)) → mark(0')
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0')) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:true:false:ok → 0':mark:true:false:ok
fact :: 0':mark:true:false:ok → 0':mark:true:false:ok
mark :: 0':mark:true:false:ok → 0':mark:true:false:ok
if :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
zero :: 0':mark:true:false:ok → 0':mark:true:false:ok
s :: 0':mark:true:false:ok → 0':mark:true:false:ok
0' :: 0':mark:true:false:ok
prod :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
p :: 0':mark:true:false:ok → 0':mark:true:false:ok
add :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
true :: 0':mark:true:false:ok
false :: 0':mark:true:false:ok
proper :: 0':mark:true:false:ok → 0':mark:true:false:ok
ok :: 0':mark:true:false:ok → 0':mark:true:false:ok
top :: 0':mark:true:false:ok → top
hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok
hole_top2_0 :: top
gen_0':mark:true:false:ok3_0 :: Nat → 0':mark:true:false:ok

Lemmas:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
zero(gen_0':mark:true:false:ok3_0(+(1, n1903_0))) → *4_0, rt ∈ Ω(n19030)
s(gen_0':mark:true:false:ok3_0(+(1, n2510_0))) → *4_0, rt ∈ Ω(n25100)
prod(gen_0':mark:true:false:ok3_0(+(1, n3218_0)), gen_0':mark:true:false:ok3_0(b)) → *4_0, rt ∈ Ω(n32180)
fact(gen_0':mark:true:false:ok3_0(+(1, n5332_0))) → *4_0, rt ∈ Ω(n53320)
p(gen_0':mark:true:false:ok3_0(+(1, n6291_0))) → *4_0, rt ∈ Ω(n62910)
add(gen_0':mark:true:false:ok3_0(+(1, n7351_0)), gen_0':mark:true:false:ok3_0(b)) → *4_0, rt ∈ Ω(n73510)

Generator Equations:
gen_0':mark:true:false:ok3_0(0) ⇔ 0'
gen_0':mark:true:false:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:true:false:ok3_0(x))

The following defined symbols remain to be analysed:
active, proper, top

They will be analysed ascendingly in the following order:
active < top
proper < top

(30) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol active.

(31) Obligation:

TRS:
Rules:
active(fact(X)) → mark(if(zero(X), s(0'), prod(X, fact(p(X)))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0', X)) → mark(0')
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0')) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:true:false:ok → 0':mark:true:false:ok
fact :: 0':mark:true:false:ok → 0':mark:true:false:ok
mark :: 0':mark:true:false:ok → 0':mark:true:false:ok
if :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
zero :: 0':mark:true:false:ok → 0':mark:true:false:ok
s :: 0':mark:true:false:ok → 0':mark:true:false:ok
0' :: 0':mark:true:false:ok
prod :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
p :: 0':mark:true:false:ok → 0':mark:true:false:ok
add :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
true :: 0':mark:true:false:ok
false :: 0':mark:true:false:ok
proper :: 0':mark:true:false:ok → 0':mark:true:false:ok
ok :: 0':mark:true:false:ok → 0':mark:true:false:ok
top :: 0':mark:true:false:ok → top
hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok
hole_top2_0 :: top
gen_0':mark:true:false:ok3_0 :: Nat → 0':mark:true:false:ok

Lemmas:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
zero(gen_0':mark:true:false:ok3_0(+(1, n1903_0))) → *4_0, rt ∈ Ω(n19030)
s(gen_0':mark:true:false:ok3_0(+(1, n2510_0))) → *4_0, rt ∈ Ω(n25100)
prod(gen_0':mark:true:false:ok3_0(+(1, n3218_0)), gen_0':mark:true:false:ok3_0(b)) → *4_0, rt ∈ Ω(n32180)
fact(gen_0':mark:true:false:ok3_0(+(1, n5332_0))) → *4_0, rt ∈ Ω(n53320)
p(gen_0':mark:true:false:ok3_0(+(1, n6291_0))) → *4_0, rt ∈ Ω(n62910)
add(gen_0':mark:true:false:ok3_0(+(1, n7351_0)), gen_0':mark:true:false:ok3_0(b)) → *4_0, rt ∈ Ω(n73510)

Generator Equations:
gen_0':mark:true:false:ok3_0(0) ⇔ 0'
gen_0':mark:true:false:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:true:false:ok3_0(x))

The following defined symbols remain to be analysed:
proper, top

They will be analysed ascendingly in the following order:
proper < top

(32) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol proper.

(33) Obligation:

TRS:
Rules:
active(fact(X)) → mark(if(zero(X), s(0'), prod(X, fact(p(X)))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0', X)) → mark(0')
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0')) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:true:false:ok → 0':mark:true:false:ok
fact :: 0':mark:true:false:ok → 0':mark:true:false:ok
mark :: 0':mark:true:false:ok → 0':mark:true:false:ok
if :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
zero :: 0':mark:true:false:ok → 0':mark:true:false:ok
s :: 0':mark:true:false:ok → 0':mark:true:false:ok
0' :: 0':mark:true:false:ok
prod :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
p :: 0':mark:true:false:ok → 0':mark:true:false:ok
add :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
true :: 0':mark:true:false:ok
false :: 0':mark:true:false:ok
proper :: 0':mark:true:false:ok → 0':mark:true:false:ok
ok :: 0':mark:true:false:ok → 0':mark:true:false:ok
top :: 0':mark:true:false:ok → top
hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok
hole_top2_0 :: top
gen_0':mark:true:false:ok3_0 :: Nat → 0':mark:true:false:ok

Lemmas:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
zero(gen_0':mark:true:false:ok3_0(+(1, n1903_0))) → *4_0, rt ∈ Ω(n19030)
s(gen_0':mark:true:false:ok3_0(+(1, n2510_0))) → *4_0, rt ∈ Ω(n25100)
prod(gen_0':mark:true:false:ok3_0(+(1, n3218_0)), gen_0':mark:true:false:ok3_0(b)) → *4_0, rt ∈ Ω(n32180)
fact(gen_0':mark:true:false:ok3_0(+(1, n5332_0))) → *4_0, rt ∈ Ω(n53320)
p(gen_0':mark:true:false:ok3_0(+(1, n6291_0))) → *4_0, rt ∈ Ω(n62910)
add(gen_0':mark:true:false:ok3_0(+(1, n7351_0)), gen_0':mark:true:false:ok3_0(b)) → *4_0, rt ∈ Ω(n73510)

Generator Equations:
gen_0':mark:true:false:ok3_0(0) ⇔ 0'
gen_0':mark:true:false:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:true:false:ok3_0(x))

The following defined symbols remain to be analysed:
top

(34) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol top.

(35) Obligation:

TRS:
Rules:
active(fact(X)) → mark(if(zero(X), s(0'), prod(X, fact(p(X)))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0', X)) → mark(0')
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0')) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:true:false:ok → 0':mark:true:false:ok
fact :: 0':mark:true:false:ok → 0':mark:true:false:ok
mark :: 0':mark:true:false:ok → 0':mark:true:false:ok
if :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
zero :: 0':mark:true:false:ok → 0':mark:true:false:ok
s :: 0':mark:true:false:ok → 0':mark:true:false:ok
0' :: 0':mark:true:false:ok
prod :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
p :: 0':mark:true:false:ok → 0':mark:true:false:ok
add :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
true :: 0':mark:true:false:ok
false :: 0':mark:true:false:ok
proper :: 0':mark:true:false:ok → 0':mark:true:false:ok
ok :: 0':mark:true:false:ok → 0':mark:true:false:ok
top :: 0':mark:true:false:ok → top
hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok
hole_top2_0 :: top
gen_0':mark:true:false:ok3_0 :: Nat → 0':mark:true:false:ok

Lemmas:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
zero(gen_0':mark:true:false:ok3_0(+(1, n1903_0))) → *4_0, rt ∈ Ω(n19030)
s(gen_0':mark:true:false:ok3_0(+(1, n2510_0))) → *4_0, rt ∈ Ω(n25100)
prod(gen_0':mark:true:false:ok3_0(+(1, n3218_0)), gen_0':mark:true:false:ok3_0(b)) → *4_0, rt ∈ Ω(n32180)
fact(gen_0':mark:true:false:ok3_0(+(1, n5332_0))) → *4_0, rt ∈ Ω(n53320)
p(gen_0':mark:true:false:ok3_0(+(1, n6291_0))) → *4_0, rt ∈ Ω(n62910)
add(gen_0':mark:true:false:ok3_0(+(1, n7351_0)), gen_0':mark:true:false:ok3_0(b)) → *4_0, rt ∈ Ω(n73510)

Generator Equations:
gen_0':mark:true:false:ok3_0(0) ⇔ 0'
gen_0':mark:true:false:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:true:false:ok3_0(x))

No more defined symbols left to analyse.

(36) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)

(37) BOUNDS(n^1, INF)

(38) Obligation:

TRS:
Rules:
active(fact(X)) → mark(if(zero(X), s(0'), prod(X, fact(p(X)))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0', X)) → mark(0')
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0')) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:true:false:ok → 0':mark:true:false:ok
fact :: 0':mark:true:false:ok → 0':mark:true:false:ok
mark :: 0':mark:true:false:ok → 0':mark:true:false:ok
if :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
zero :: 0':mark:true:false:ok → 0':mark:true:false:ok
s :: 0':mark:true:false:ok → 0':mark:true:false:ok
0' :: 0':mark:true:false:ok
prod :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
p :: 0':mark:true:false:ok → 0':mark:true:false:ok
add :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
true :: 0':mark:true:false:ok
false :: 0':mark:true:false:ok
proper :: 0':mark:true:false:ok → 0':mark:true:false:ok
ok :: 0':mark:true:false:ok → 0':mark:true:false:ok
top :: 0':mark:true:false:ok → top
hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok
hole_top2_0 :: top
gen_0':mark:true:false:ok3_0 :: Nat → 0':mark:true:false:ok

Lemmas:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
zero(gen_0':mark:true:false:ok3_0(+(1, n1903_0))) → *4_0, rt ∈ Ω(n19030)
s(gen_0':mark:true:false:ok3_0(+(1, n2510_0))) → *4_0, rt ∈ Ω(n25100)
prod(gen_0':mark:true:false:ok3_0(+(1, n3218_0)), gen_0':mark:true:false:ok3_0(b)) → *4_0, rt ∈ Ω(n32180)
fact(gen_0':mark:true:false:ok3_0(+(1, n5332_0))) → *4_0, rt ∈ Ω(n53320)
p(gen_0':mark:true:false:ok3_0(+(1, n6291_0))) → *4_0, rt ∈ Ω(n62910)
add(gen_0':mark:true:false:ok3_0(+(1, n7351_0)), gen_0':mark:true:false:ok3_0(b)) → *4_0, rt ∈ Ω(n73510)

Generator Equations:
gen_0':mark:true:false:ok3_0(0) ⇔ 0'
gen_0':mark:true:false:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:true:false:ok3_0(x))

No more defined symbols left to analyse.

(39) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)

(40) BOUNDS(n^1, INF)

(41) Obligation:

TRS:
Rules:
active(fact(X)) → mark(if(zero(X), s(0'), prod(X, fact(p(X)))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0', X)) → mark(0')
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0')) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:true:false:ok → 0':mark:true:false:ok
fact :: 0':mark:true:false:ok → 0':mark:true:false:ok
mark :: 0':mark:true:false:ok → 0':mark:true:false:ok
if :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
zero :: 0':mark:true:false:ok → 0':mark:true:false:ok
s :: 0':mark:true:false:ok → 0':mark:true:false:ok
0' :: 0':mark:true:false:ok
prod :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
p :: 0':mark:true:false:ok → 0':mark:true:false:ok
add :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
true :: 0':mark:true:false:ok
false :: 0':mark:true:false:ok
proper :: 0':mark:true:false:ok → 0':mark:true:false:ok
ok :: 0':mark:true:false:ok → 0':mark:true:false:ok
top :: 0':mark:true:false:ok → top
hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok
hole_top2_0 :: top
gen_0':mark:true:false:ok3_0 :: Nat → 0':mark:true:false:ok

Lemmas:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
zero(gen_0':mark:true:false:ok3_0(+(1, n1903_0))) → *4_0, rt ∈ Ω(n19030)
s(gen_0':mark:true:false:ok3_0(+(1, n2510_0))) → *4_0, rt ∈ Ω(n25100)
prod(gen_0':mark:true:false:ok3_0(+(1, n3218_0)), gen_0':mark:true:false:ok3_0(b)) → *4_0, rt ∈ Ω(n32180)
fact(gen_0':mark:true:false:ok3_0(+(1, n5332_0))) → *4_0, rt ∈ Ω(n53320)
p(gen_0':mark:true:false:ok3_0(+(1, n6291_0))) → *4_0, rt ∈ Ω(n62910)

Generator Equations:
gen_0':mark:true:false:ok3_0(0) ⇔ 0'
gen_0':mark:true:false:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:true:false:ok3_0(x))

No more defined symbols left to analyse.

(42) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)

(43) BOUNDS(n^1, INF)

(44) Obligation:

TRS:
Rules:
active(fact(X)) → mark(if(zero(X), s(0'), prod(X, fact(p(X)))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0', X)) → mark(0')
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0')) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:true:false:ok → 0':mark:true:false:ok
fact :: 0':mark:true:false:ok → 0':mark:true:false:ok
mark :: 0':mark:true:false:ok → 0':mark:true:false:ok
if :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
zero :: 0':mark:true:false:ok → 0':mark:true:false:ok
s :: 0':mark:true:false:ok → 0':mark:true:false:ok
0' :: 0':mark:true:false:ok
prod :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
p :: 0':mark:true:false:ok → 0':mark:true:false:ok
add :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
true :: 0':mark:true:false:ok
false :: 0':mark:true:false:ok
proper :: 0':mark:true:false:ok → 0':mark:true:false:ok
ok :: 0':mark:true:false:ok → 0':mark:true:false:ok
top :: 0':mark:true:false:ok → top
hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok
hole_top2_0 :: top
gen_0':mark:true:false:ok3_0 :: Nat → 0':mark:true:false:ok

Lemmas:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
zero(gen_0':mark:true:false:ok3_0(+(1, n1903_0))) → *4_0, rt ∈ Ω(n19030)
s(gen_0':mark:true:false:ok3_0(+(1, n2510_0))) → *4_0, rt ∈ Ω(n25100)
prod(gen_0':mark:true:false:ok3_0(+(1, n3218_0)), gen_0':mark:true:false:ok3_0(b)) → *4_0, rt ∈ Ω(n32180)
fact(gen_0':mark:true:false:ok3_0(+(1, n5332_0))) → *4_0, rt ∈ Ω(n53320)

Generator Equations:
gen_0':mark:true:false:ok3_0(0) ⇔ 0'
gen_0':mark:true:false:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:true:false:ok3_0(x))

No more defined symbols left to analyse.

(45) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)

(46) BOUNDS(n^1, INF)

(47) Obligation:

TRS:
Rules:
active(fact(X)) → mark(if(zero(X), s(0'), prod(X, fact(p(X)))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0', X)) → mark(0')
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0')) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:true:false:ok → 0':mark:true:false:ok
fact :: 0':mark:true:false:ok → 0':mark:true:false:ok
mark :: 0':mark:true:false:ok → 0':mark:true:false:ok
if :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
zero :: 0':mark:true:false:ok → 0':mark:true:false:ok
s :: 0':mark:true:false:ok → 0':mark:true:false:ok
0' :: 0':mark:true:false:ok
prod :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
p :: 0':mark:true:false:ok → 0':mark:true:false:ok
add :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
true :: 0':mark:true:false:ok
false :: 0':mark:true:false:ok
proper :: 0':mark:true:false:ok → 0':mark:true:false:ok
ok :: 0':mark:true:false:ok → 0':mark:true:false:ok
top :: 0':mark:true:false:ok → top
hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok
hole_top2_0 :: top
gen_0':mark:true:false:ok3_0 :: Nat → 0':mark:true:false:ok

Lemmas:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
zero(gen_0':mark:true:false:ok3_0(+(1, n1903_0))) → *4_0, rt ∈ Ω(n19030)
s(gen_0':mark:true:false:ok3_0(+(1, n2510_0))) → *4_0, rt ∈ Ω(n25100)
prod(gen_0':mark:true:false:ok3_0(+(1, n3218_0)), gen_0':mark:true:false:ok3_0(b)) → *4_0, rt ∈ Ω(n32180)

Generator Equations:
gen_0':mark:true:false:ok3_0(0) ⇔ 0'
gen_0':mark:true:false:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:true:false:ok3_0(x))

No more defined symbols left to analyse.

(48) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)

(49) BOUNDS(n^1, INF)

(50) Obligation:

TRS:
Rules:
active(fact(X)) → mark(if(zero(X), s(0'), prod(X, fact(p(X)))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0', X)) → mark(0')
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0')) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:true:false:ok → 0':mark:true:false:ok
fact :: 0':mark:true:false:ok → 0':mark:true:false:ok
mark :: 0':mark:true:false:ok → 0':mark:true:false:ok
if :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
zero :: 0':mark:true:false:ok → 0':mark:true:false:ok
s :: 0':mark:true:false:ok → 0':mark:true:false:ok
0' :: 0':mark:true:false:ok
prod :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
p :: 0':mark:true:false:ok → 0':mark:true:false:ok
add :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
true :: 0':mark:true:false:ok
false :: 0':mark:true:false:ok
proper :: 0':mark:true:false:ok → 0':mark:true:false:ok
ok :: 0':mark:true:false:ok → 0':mark:true:false:ok
top :: 0':mark:true:false:ok → top
hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok
hole_top2_0 :: top
gen_0':mark:true:false:ok3_0 :: Nat → 0':mark:true:false:ok

Lemmas:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
zero(gen_0':mark:true:false:ok3_0(+(1, n1903_0))) → *4_0, rt ∈ Ω(n19030)
s(gen_0':mark:true:false:ok3_0(+(1, n2510_0))) → *4_0, rt ∈ Ω(n25100)

Generator Equations:
gen_0':mark:true:false:ok3_0(0) ⇔ 0'
gen_0':mark:true:false:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:true:false:ok3_0(x))

No more defined symbols left to analyse.

(51) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)

(52) BOUNDS(n^1, INF)

(53) Obligation:

TRS:
Rules:
active(fact(X)) → mark(if(zero(X), s(0'), prod(X, fact(p(X)))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0', X)) → mark(0')
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0')) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:true:false:ok → 0':mark:true:false:ok
fact :: 0':mark:true:false:ok → 0':mark:true:false:ok
mark :: 0':mark:true:false:ok → 0':mark:true:false:ok
if :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
zero :: 0':mark:true:false:ok → 0':mark:true:false:ok
s :: 0':mark:true:false:ok → 0':mark:true:false:ok
0' :: 0':mark:true:false:ok
prod :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
p :: 0':mark:true:false:ok → 0':mark:true:false:ok
add :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
true :: 0':mark:true:false:ok
false :: 0':mark:true:false:ok
proper :: 0':mark:true:false:ok → 0':mark:true:false:ok
ok :: 0':mark:true:false:ok → 0':mark:true:false:ok
top :: 0':mark:true:false:ok → top
hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok
hole_top2_0 :: top
gen_0':mark:true:false:ok3_0 :: Nat → 0':mark:true:false:ok

Lemmas:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
zero(gen_0':mark:true:false:ok3_0(+(1, n1903_0))) → *4_0, rt ∈ Ω(n19030)

Generator Equations:
gen_0':mark:true:false:ok3_0(0) ⇔ 0'
gen_0':mark:true:false:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:true:false:ok3_0(x))

No more defined symbols left to analyse.

(54) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)

(55) BOUNDS(n^1, INF)

(56) Obligation:

TRS:
Rules:
active(fact(X)) → mark(if(zero(X), s(0'), prod(X, fact(p(X)))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0', X)) → mark(0')
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0')) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:true:false:ok → 0':mark:true:false:ok
fact :: 0':mark:true:false:ok → 0':mark:true:false:ok
mark :: 0':mark:true:false:ok → 0':mark:true:false:ok
if :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
zero :: 0':mark:true:false:ok → 0':mark:true:false:ok
s :: 0':mark:true:false:ok → 0':mark:true:false:ok
0' :: 0':mark:true:false:ok
prod :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
p :: 0':mark:true:false:ok → 0':mark:true:false:ok
add :: 0':mark:true:false:ok → 0':mark:true:false:ok → 0':mark:true:false:ok
true :: 0':mark:true:false:ok
false :: 0':mark:true:false:ok
proper :: 0':mark:true:false:ok → 0':mark:true:false:ok
ok :: 0':mark:true:false:ok → 0':mark:true:false:ok
top :: 0':mark:true:false:ok → top
hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok
hole_top2_0 :: top
gen_0':mark:true:false:ok3_0 :: Nat → 0':mark:true:false:ok

Lemmas:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_0':mark:true:false:ok3_0(0) ⇔ 0'
gen_0':mark:true:false:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:true:false:ok3_0(x))

No more defined symbols left to analyse.

(57) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) → *4_0, rt ∈ Ω(n50)

(58) BOUNDS(n^1, INF)