(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
2ndspos(s(s(N1134_1)), cons(X, cons(Y400_1, cons2(X1135_1, cons(Y1136_1, Z1137_1))))) →+ rcons(posrecip(Y400_1), rcons(negrecip(Y1136_1), 2ndspos(N1134_1, Z1137_1)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1].
The pumping substitution is [N1134_1 / s(s(N1134_1)), Z1137_1 / cons(X, cons(Y400_1, cons2(X1135_1, cons(Y1136_1, Z1137_1))))].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
2ndspos(0', Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0', Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0'))
plus(0', Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0', Y) → 0'
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X
S is empty.
Rewrite Strategy: FULL
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
from/0
cons/0
n__from/0
cons2/0
rcons/0
posrecip/0
negrecip/0
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
from → cons(n__from)
2ndspos(0', Z) → rnil
2ndspos(s(N), cons(Z)) → 2ndspos(s(N), cons2(activate(Z)))
2ndspos(s(N), cons2(cons(Z))) → rcons(2ndsneg(N, activate(Z)))
2ndsneg(0', Z) → rnil
2ndsneg(s(N), cons(Z)) → 2ndsneg(s(N), cons2(activate(Z)))
2ndsneg(s(N), cons2(cons(Z))) → rcons(2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from)
plus(0', Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0', Y) → 0'
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from → n__from
activate(n__from) → from
activate(X) → X
S is empty.
Rewrite Strategy: FULL
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
TRS:
Rules:
from → cons(n__from)
2ndspos(0', Z) → rnil
2ndspos(s(N), cons(Z)) → 2ndspos(s(N), cons2(activate(Z)))
2ndspos(s(N), cons2(cons(Z))) → rcons(2ndsneg(N, activate(Z)))
2ndsneg(0', Z) → rnil
2ndsneg(s(N), cons(Z)) → 2ndsneg(s(N), cons2(activate(Z)))
2ndsneg(s(N), cons2(cons(Z))) → rcons(2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from)
plus(0', Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0', Y) → 0'
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from → n__from
activate(n__from) → from
activate(X) → X
Types:
from :: n__from:cons:cons2
cons :: n__from:cons:cons2 → n__from:cons:cons2
n__from :: n__from:cons:cons2
2ndspos :: 0':s → n__from:cons:cons2 → rnil:rcons
0' :: 0':s
rnil :: rnil:rcons
s :: 0':s → 0':s
cons2 :: n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: rnil:rcons → rnil:rcons
2ndsneg :: 0':s → n__from:cons:cons2 → rnil:rcons
pi :: 0':s → rnil:rcons
plus :: 0':s → 0':s → 0':s
times :: 0':s → 0':s → 0':s
square :: 0':s → 0':s
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_rnil:rcons2_0 :: rnil:rcons
hole_0':s3_0 :: 0':s
gen_n__from:cons:cons24_0 :: Nat → n__from:cons:cons2
gen_rnil:rcons5_0 :: Nat → rnil:rcons
gen_0':s6_0 :: Nat → 0':s
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
2ndspos,
2ndsneg,
plus,
timesThey will be analysed ascendingly in the following order:
2ndspos = 2ndsneg
plus < times
(10) Obligation:
TRS:
Rules:
from →
cons(
n__from)
2ndspos(
0',
Z) →
rnil2ndspos(
s(
N),
cons(
Z)) →
2ndspos(
s(
N),
cons2(
activate(
Z)))
2ndspos(
s(
N),
cons2(
cons(
Z))) →
rcons(
2ndsneg(
N,
activate(
Z)))
2ndsneg(
0',
Z) →
rnil2ndsneg(
s(
N),
cons(
Z)) →
2ndsneg(
s(
N),
cons2(
activate(
Z)))
2ndsneg(
s(
N),
cons2(
cons(
Z))) →
rcons(
2ndspos(
N,
activate(
Z)))
pi(
X) →
2ndspos(
X,
from)
plus(
0',
Y) →
Yplus(
s(
X),
Y) →
s(
plus(
X,
Y))
times(
0',
Y) →
0'times(
s(
X),
Y) →
plus(
Y,
times(
X,
Y))
square(
X) →
times(
X,
X)
from →
n__fromactivate(
n__from) →
fromactivate(
X) →
XTypes:
from :: n__from:cons:cons2
cons :: n__from:cons:cons2 → n__from:cons:cons2
n__from :: n__from:cons:cons2
2ndspos :: 0':s → n__from:cons:cons2 → rnil:rcons
0' :: 0':s
rnil :: rnil:rcons
s :: 0':s → 0':s
cons2 :: n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: rnil:rcons → rnil:rcons
2ndsneg :: 0':s → n__from:cons:cons2 → rnil:rcons
pi :: 0':s → rnil:rcons
plus :: 0':s → 0':s → 0':s
times :: 0':s → 0':s → 0':s
square :: 0':s → 0':s
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_rnil:rcons2_0 :: rnil:rcons
hole_0':s3_0 :: 0':s
gen_n__from:cons:cons24_0 :: Nat → n__from:cons:cons2
gen_rnil:rcons5_0 :: Nat → rnil:rcons
gen_0':s6_0 :: Nat → 0':s
Generator Equations:
gen_n__from:cons:cons24_0(0) ⇔ n__from
gen_n__from:cons:cons24_0(+(x, 1)) ⇔ cons(gen_n__from:cons:cons24_0(x))
gen_rnil:rcons5_0(0) ⇔ rnil
gen_rnil:rcons5_0(+(x, 1)) ⇔ rcons(gen_rnil:rcons5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
The following defined symbols remain to be analysed:
plus, 2ndspos, 2ndsneg, times
They will be analysed ascendingly in the following order:
2ndspos = 2ndsneg
plus < times
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_0':s6_0(
n8_0),
gen_0':s6_0(
b)) →
gen_0':s6_0(
+(
n8_0,
b)), rt ∈ Ω(1 + n8
0)
Induction Base:
plus(gen_0':s6_0(0), gen_0':s6_0(b)) →RΩ(1)
gen_0':s6_0(b)
Induction Step:
plus(gen_0':s6_0(+(n8_0, 1)), gen_0':s6_0(b)) →RΩ(1)
s(plus(gen_0':s6_0(n8_0), gen_0':s6_0(b))) →IH
s(gen_0':s6_0(+(b, c9_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
from →
cons(
n__from)
2ndspos(
0',
Z) →
rnil2ndspos(
s(
N),
cons(
Z)) →
2ndspos(
s(
N),
cons2(
activate(
Z)))
2ndspos(
s(
N),
cons2(
cons(
Z))) →
rcons(
2ndsneg(
N,
activate(
Z)))
2ndsneg(
0',
Z) →
rnil2ndsneg(
s(
N),
cons(
Z)) →
2ndsneg(
s(
N),
cons2(
activate(
Z)))
2ndsneg(
s(
N),
cons2(
cons(
Z))) →
rcons(
2ndspos(
N,
activate(
Z)))
pi(
X) →
2ndspos(
X,
from)
plus(
0',
Y) →
Yplus(
s(
X),
Y) →
s(
plus(
X,
Y))
times(
0',
Y) →
0'times(
s(
X),
Y) →
plus(
Y,
times(
X,
Y))
square(
X) →
times(
X,
X)
from →
n__fromactivate(
n__from) →
fromactivate(
X) →
XTypes:
from :: n__from:cons:cons2
cons :: n__from:cons:cons2 → n__from:cons:cons2
n__from :: n__from:cons:cons2
2ndspos :: 0':s → n__from:cons:cons2 → rnil:rcons
0' :: 0':s
rnil :: rnil:rcons
s :: 0':s → 0':s
cons2 :: n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: rnil:rcons → rnil:rcons
2ndsneg :: 0':s → n__from:cons:cons2 → rnil:rcons
pi :: 0':s → rnil:rcons
plus :: 0':s → 0':s → 0':s
times :: 0':s → 0':s → 0':s
square :: 0':s → 0':s
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_rnil:rcons2_0 :: rnil:rcons
hole_0':s3_0 :: 0':s
gen_n__from:cons:cons24_0 :: Nat → n__from:cons:cons2
gen_rnil:rcons5_0 :: Nat → rnil:rcons
gen_0':s6_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s6_0(n8_0), gen_0':s6_0(b)) → gen_0':s6_0(+(n8_0, b)), rt ∈ Ω(1 + n80)
Generator Equations:
gen_n__from:cons:cons24_0(0) ⇔ n__from
gen_n__from:cons:cons24_0(+(x, 1)) ⇔ cons(gen_n__from:cons:cons24_0(x))
gen_rnil:rcons5_0(0) ⇔ rnil
gen_rnil:rcons5_0(+(x, 1)) ⇔ rcons(gen_rnil:rcons5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
The following defined symbols remain to be analysed:
times, 2ndspos, 2ndsneg
They will be analysed ascendingly in the following order:
2ndspos = 2ndsneg
(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
times(
gen_0':s6_0(
n1027_0),
gen_0':s6_0(
b)) →
gen_0':s6_0(
*(
n1027_0,
b)), rt ∈ Ω(1 + b·n1027
0 + n1027
0)
Induction Base:
times(gen_0':s6_0(0), gen_0':s6_0(b)) →RΩ(1)
0'
Induction Step:
times(gen_0':s6_0(+(n1027_0, 1)), gen_0':s6_0(b)) →RΩ(1)
plus(gen_0':s6_0(b), times(gen_0':s6_0(n1027_0), gen_0':s6_0(b))) →IH
plus(gen_0':s6_0(b), gen_0':s6_0(*(c1028_0, b))) →LΩ(1 + b)
gen_0':s6_0(+(b, *(n1027_0, b)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(15) Complex Obligation (BEST)
(16) Obligation:
TRS:
Rules:
from →
cons(
n__from)
2ndspos(
0',
Z) →
rnil2ndspos(
s(
N),
cons(
Z)) →
2ndspos(
s(
N),
cons2(
activate(
Z)))
2ndspos(
s(
N),
cons2(
cons(
Z))) →
rcons(
2ndsneg(
N,
activate(
Z)))
2ndsneg(
0',
Z) →
rnil2ndsneg(
s(
N),
cons(
Z)) →
2ndsneg(
s(
N),
cons2(
activate(
Z)))
2ndsneg(
s(
N),
cons2(
cons(
Z))) →
rcons(
2ndspos(
N,
activate(
Z)))
pi(
X) →
2ndspos(
X,
from)
plus(
0',
Y) →
Yplus(
s(
X),
Y) →
s(
plus(
X,
Y))
times(
0',
Y) →
0'times(
s(
X),
Y) →
plus(
Y,
times(
X,
Y))
square(
X) →
times(
X,
X)
from →
n__fromactivate(
n__from) →
fromactivate(
X) →
XTypes:
from :: n__from:cons:cons2
cons :: n__from:cons:cons2 → n__from:cons:cons2
n__from :: n__from:cons:cons2
2ndspos :: 0':s → n__from:cons:cons2 → rnil:rcons
0' :: 0':s
rnil :: rnil:rcons
s :: 0':s → 0':s
cons2 :: n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: rnil:rcons → rnil:rcons
2ndsneg :: 0':s → n__from:cons:cons2 → rnil:rcons
pi :: 0':s → rnil:rcons
plus :: 0':s → 0':s → 0':s
times :: 0':s → 0':s → 0':s
square :: 0':s → 0':s
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_rnil:rcons2_0 :: rnil:rcons
hole_0':s3_0 :: 0':s
gen_n__from:cons:cons24_0 :: Nat → n__from:cons:cons2
gen_rnil:rcons5_0 :: Nat → rnil:rcons
gen_0':s6_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s6_0(n8_0), gen_0':s6_0(b)) → gen_0':s6_0(+(n8_0, b)), rt ∈ Ω(1 + n80)
times(gen_0':s6_0(n1027_0), gen_0':s6_0(b)) → gen_0':s6_0(*(n1027_0, b)), rt ∈ Ω(1 + b·n10270 + n10270)
Generator Equations:
gen_n__from:cons:cons24_0(0) ⇔ n__from
gen_n__from:cons:cons24_0(+(x, 1)) ⇔ cons(gen_n__from:cons:cons24_0(x))
gen_rnil:rcons5_0(0) ⇔ rnil
gen_rnil:rcons5_0(+(x, 1)) ⇔ rcons(gen_rnil:rcons5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
The following defined symbols remain to be analysed:
2ndsneg, 2ndspos
They will be analysed ascendingly in the following order:
2ndspos = 2ndsneg
(17) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol 2ndsneg.
(18) Obligation:
TRS:
Rules:
from →
cons(
n__from)
2ndspos(
0',
Z) →
rnil2ndspos(
s(
N),
cons(
Z)) →
2ndspos(
s(
N),
cons2(
activate(
Z)))
2ndspos(
s(
N),
cons2(
cons(
Z))) →
rcons(
2ndsneg(
N,
activate(
Z)))
2ndsneg(
0',
Z) →
rnil2ndsneg(
s(
N),
cons(
Z)) →
2ndsneg(
s(
N),
cons2(
activate(
Z)))
2ndsneg(
s(
N),
cons2(
cons(
Z))) →
rcons(
2ndspos(
N,
activate(
Z)))
pi(
X) →
2ndspos(
X,
from)
plus(
0',
Y) →
Yplus(
s(
X),
Y) →
s(
plus(
X,
Y))
times(
0',
Y) →
0'times(
s(
X),
Y) →
plus(
Y,
times(
X,
Y))
square(
X) →
times(
X,
X)
from →
n__fromactivate(
n__from) →
fromactivate(
X) →
XTypes:
from :: n__from:cons:cons2
cons :: n__from:cons:cons2 → n__from:cons:cons2
n__from :: n__from:cons:cons2
2ndspos :: 0':s → n__from:cons:cons2 → rnil:rcons
0' :: 0':s
rnil :: rnil:rcons
s :: 0':s → 0':s
cons2 :: n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: rnil:rcons → rnil:rcons
2ndsneg :: 0':s → n__from:cons:cons2 → rnil:rcons
pi :: 0':s → rnil:rcons
plus :: 0':s → 0':s → 0':s
times :: 0':s → 0':s → 0':s
square :: 0':s → 0':s
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_rnil:rcons2_0 :: rnil:rcons
hole_0':s3_0 :: 0':s
gen_n__from:cons:cons24_0 :: Nat → n__from:cons:cons2
gen_rnil:rcons5_0 :: Nat → rnil:rcons
gen_0':s6_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s6_0(n8_0), gen_0':s6_0(b)) → gen_0':s6_0(+(n8_0, b)), rt ∈ Ω(1 + n80)
times(gen_0':s6_0(n1027_0), gen_0':s6_0(b)) → gen_0':s6_0(*(n1027_0, b)), rt ∈ Ω(1 + b·n10270 + n10270)
Generator Equations:
gen_n__from:cons:cons24_0(0) ⇔ n__from
gen_n__from:cons:cons24_0(+(x, 1)) ⇔ cons(gen_n__from:cons:cons24_0(x))
gen_rnil:rcons5_0(0) ⇔ rnil
gen_rnil:rcons5_0(+(x, 1)) ⇔ rcons(gen_rnil:rcons5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
The following defined symbols remain to be analysed:
2ndspos
They will be analysed ascendingly in the following order:
2ndspos = 2ndsneg
(19) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol 2ndspos.
(20) Obligation:
TRS:
Rules:
from →
cons(
n__from)
2ndspos(
0',
Z) →
rnil2ndspos(
s(
N),
cons(
Z)) →
2ndspos(
s(
N),
cons2(
activate(
Z)))
2ndspos(
s(
N),
cons2(
cons(
Z))) →
rcons(
2ndsneg(
N,
activate(
Z)))
2ndsneg(
0',
Z) →
rnil2ndsneg(
s(
N),
cons(
Z)) →
2ndsneg(
s(
N),
cons2(
activate(
Z)))
2ndsneg(
s(
N),
cons2(
cons(
Z))) →
rcons(
2ndspos(
N,
activate(
Z)))
pi(
X) →
2ndspos(
X,
from)
plus(
0',
Y) →
Yplus(
s(
X),
Y) →
s(
plus(
X,
Y))
times(
0',
Y) →
0'times(
s(
X),
Y) →
plus(
Y,
times(
X,
Y))
square(
X) →
times(
X,
X)
from →
n__fromactivate(
n__from) →
fromactivate(
X) →
XTypes:
from :: n__from:cons:cons2
cons :: n__from:cons:cons2 → n__from:cons:cons2
n__from :: n__from:cons:cons2
2ndspos :: 0':s → n__from:cons:cons2 → rnil:rcons
0' :: 0':s
rnil :: rnil:rcons
s :: 0':s → 0':s
cons2 :: n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: rnil:rcons → rnil:rcons
2ndsneg :: 0':s → n__from:cons:cons2 → rnil:rcons
pi :: 0':s → rnil:rcons
plus :: 0':s → 0':s → 0':s
times :: 0':s → 0':s → 0':s
square :: 0':s → 0':s
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_rnil:rcons2_0 :: rnil:rcons
hole_0':s3_0 :: 0':s
gen_n__from:cons:cons24_0 :: Nat → n__from:cons:cons2
gen_rnil:rcons5_0 :: Nat → rnil:rcons
gen_0':s6_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s6_0(n8_0), gen_0':s6_0(b)) → gen_0':s6_0(+(n8_0, b)), rt ∈ Ω(1 + n80)
times(gen_0':s6_0(n1027_0), gen_0':s6_0(b)) → gen_0':s6_0(*(n1027_0, b)), rt ∈ Ω(1 + b·n10270 + n10270)
Generator Equations:
gen_n__from:cons:cons24_0(0) ⇔ n__from
gen_n__from:cons:cons24_0(+(x, 1)) ⇔ cons(gen_n__from:cons:cons24_0(x))
gen_rnil:rcons5_0(0) ⇔ rnil
gen_rnil:rcons5_0(+(x, 1)) ⇔ rcons(gen_rnil:rcons5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s6_0(n1027_0), gen_0':s6_0(b)) → gen_0':s6_0(*(n1027_0, b)), rt ∈ Ω(1 + b·n10270 + n10270)
(22) BOUNDS(n^2, INF)
(23) Obligation:
TRS:
Rules:
from →
cons(
n__from)
2ndspos(
0',
Z) →
rnil2ndspos(
s(
N),
cons(
Z)) →
2ndspos(
s(
N),
cons2(
activate(
Z)))
2ndspos(
s(
N),
cons2(
cons(
Z))) →
rcons(
2ndsneg(
N,
activate(
Z)))
2ndsneg(
0',
Z) →
rnil2ndsneg(
s(
N),
cons(
Z)) →
2ndsneg(
s(
N),
cons2(
activate(
Z)))
2ndsneg(
s(
N),
cons2(
cons(
Z))) →
rcons(
2ndspos(
N,
activate(
Z)))
pi(
X) →
2ndspos(
X,
from)
plus(
0',
Y) →
Yplus(
s(
X),
Y) →
s(
plus(
X,
Y))
times(
0',
Y) →
0'times(
s(
X),
Y) →
plus(
Y,
times(
X,
Y))
square(
X) →
times(
X,
X)
from →
n__fromactivate(
n__from) →
fromactivate(
X) →
XTypes:
from :: n__from:cons:cons2
cons :: n__from:cons:cons2 → n__from:cons:cons2
n__from :: n__from:cons:cons2
2ndspos :: 0':s → n__from:cons:cons2 → rnil:rcons
0' :: 0':s
rnil :: rnil:rcons
s :: 0':s → 0':s
cons2 :: n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: rnil:rcons → rnil:rcons
2ndsneg :: 0':s → n__from:cons:cons2 → rnil:rcons
pi :: 0':s → rnil:rcons
plus :: 0':s → 0':s → 0':s
times :: 0':s → 0':s → 0':s
square :: 0':s → 0':s
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_rnil:rcons2_0 :: rnil:rcons
hole_0':s3_0 :: 0':s
gen_n__from:cons:cons24_0 :: Nat → n__from:cons:cons2
gen_rnil:rcons5_0 :: Nat → rnil:rcons
gen_0':s6_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s6_0(n8_0), gen_0':s6_0(b)) → gen_0':s6_0(+(n8_0, b)), rt ∈ Ω(1 + n80)
times(gen_0':s6_0(n1027_0), gen_0':s6_0(b)) → gen_0':s6_0(*(n1027_0, b)), rt ∈ Ω(1 + b·n10270 + n10270)
Generator Equations:
gen_n__from:cons:cons24_0(0) ⇔ n__from
gen_n__from:cons:cons24_0(+(x, 1)) ⇔ cons(gen_n__from:cons:cons24_0(x))
gen_rnil:rcons5_0(0) ⇔ rnil
gen_rnil:rcons5_0(+(x, 1)) ⇔ rcons(gen_rnil:rcons5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s6_0(n1027_0), gen_0':s6_0(b)) → gen_0':s6_0(*(n1027_0, b)), rt ∈ Ω(1 + b·n10270 + n10270)
(25) BOUNDS(n^2, INF)
(26) Obligation:
TRS:
Rules:
from →
cons(
n__from)
2ndspos(
0',
Z) →
rnil2ndspos(
s(
N),
cons(
Z)) →
2ndspos(
s(
N),
cons2(
activate(
Z)))
2ndspos(
s(
N),
cons2(
cons(
Z))) →
rcons(
2ndsneg(
N,
activate(
Z)))
2ndsneg(
0',
Z) →
rnil2ndsneg(
s(
N),
cons(
Z)) →
2ndsneg(
s(
N),
cons2(
activate(
Z)))
2ndsneg(
s(
N),
cons2(
cons(
Z))) →
rcons(
2ndspos(
N,
activate(
Z)))
pi(
X) →
2ndspos(
X,
from)
plus(
0',
Y) →
Yplus(
s(
X),
Y) →
s(
plus(
X,
Y))
times(
0',
Y) →
0'times(
s(
X),
Y) →
plus(
Y,
times(
X,
Y))
square(
X) →
times(
X,
X)
from →
n__fromactivate(
n__from) →
fromactivate(
X) →
XTypes:
from :: n__from:cons:cons2
cons :: n__from:cons:cons2 → n__from:cons:cons2
n__from :: n__from:cons:cons2
2ndspos :: 0':s → n__from:cons:cons2 → rnil:rcons
0' :: 0':s
rnil :: rnil:rcons
s :: 0':s → 0':s
cons2 :: n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: rnil:rcons → rnil:rcons
2ndsneg :: 0':s → n__from:cons:cons2 → rnil:rcons
pi :: 0':s → rnil:rcons
plus :: 0':s → 0':s → 0':s
times :: 0':s → 0':s → 0':s
square :: 0':s → 0':s
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_rnil:rcons2_0 :: rnil:rcons
hole_0':s3_0 :: 0':s
gen_n__from:cons:cons24_0 :: Nat → n__from:cons:cons2
gen_rnil:rcons5_0 :: Nat → rnil:rcons
gen_0':s6_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s6_0(n8_0), gen_0':s6_0(b)) → gen_0':s6_0(+(n8_0, b)), rt ∈ Ω(1 + n80)
Generator Equations:
gen_n__from:cons:cons24_0(0) ⇔ n__from
gen_n__from:cons:cons24_0(+(x, 1)) ⇔ cons(gen_n__from:cons:cons24_0(x))
gen_rnil:rcons5_0(0) ⇔ rnil
gen_rnil:rcons5_0(+(x, 1)) ⇔ rcons(gen_rnil:rcons5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s6_0(n8_0), gen_0':s6_0(b)) → gen_0':s6_0(+(n8_0, b)), rt ∈ Ω(1 + n80)
(28) BOUNDS(n^1, INF)