0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 17 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 106 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 24 ms)
↳12 CdtProblem
↳13 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 BOUNDS(1, 1)
a__f(a, X, X) → a__f(X, a__b, b)
a__b → a
mark(f(X1, X2, X3)) → a__f(X1, mark(X2), X3)
mark(b) → a__b
mark(a) → a
a__f(X1, X2, X3) → f(X1, X2, X3)
a__b → b
As the TRS is a non-duplicating overlay system, we have rc = irc.
a__f(a, X, X) → a__f(X, a__b, b)
a__b → a
mark(f(X1, X2, X3)) → a__f(X1, mark(X2), X3)
mark(b) → a__b
mark(a) → a
a__f(X1, X2, X3) → f(X1, X2, X3)
a__b → b
Tuples:
a__f(a, z0, z0) → a__f(z0, a__b, b)
a__f(z0, z1, z2) → f(z0, z1, z2)
a__b → a
a__b → b
mark(f(z0, z1, z2)) → a__f(z0, mark(z1), z2)
mark(b) → a__b
mark(a) → a
S tuples:
A__F(a, z0, z0) → c(A__F(z0, a__b, b), A__B)
A__F(z0, z1, z2) → c1
A__B → c2
A__B → c3
MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
MARK(b) → c5(A__B)
MARK(a) → c6
K tuples:none
A__F(a, z0, z0) → c(A__F(z0, a__b, b), A__B)
A__F(z0, z1, z2) → c1
A__B → c2
A__B → c3
MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
MARK(b) → c5(A__B)
MARK(a) → c6
a__f, a__b, mark
A__F, A__B, MARK
c, c1, c2, c3, c4, c5, c6
MARK(a) → c6
A__B → c3
A__B → c2
A__F(z0, z1, z2) → c1
MARK(b) → c5(A__B)
Tuples:
a__f(a, z0, z0) → a__f(z0, a__b, b)
a__f(z0, z1, z2) → f(z0, z1, z2)
a__b → a
a__b → b
mark(f(z0, z1, z2)) → a__f(z0, mark(z1), z2)
mark(b) → a__b
mark(a) → a
S tuples:
A__F(a, z0, z0) → c(A__F(z0, a__b, b), A__B)
MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
K tuples:none
A__F(a, z0, z0) → c(A__F(z0, a__b, b), A__B)
MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
a__f, a__b, mark
A__F, MARK
c, c4
Tuples:
a__f(a, z0, z0) → a__f(z0, a__b, b)
a__f(z0, z1, z2) → f(z0, z1, z2)
a__b → a
a__b → b
mark(f(z0, z1, z2)) → a__f(z0, mark(z1), z2)
mark(b) → a__b
mark(a) → a
S tuples:
MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
A__F(a, z0, z0) → c(A__F(z0, a__b, b))
K tuples:none
MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
A__F(a, z0, z0) → c(A__F(z0, a__b, b))
a__f, a__b, mark
MARK, A__F
c4, c
We considered the (Usable) Rules:none
MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
The order we found is given by the following interpretation:
MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
A__F(a, z0, z0) → c(A__F(z0, a__b, b))
POL(A__F(x1, x2, x3)) = 0
POL(MARK(x1)) = x1
POL(a) = 0
POL(a__b) = 0
POL(a__f(x1, x2, x3)) = [1] + x1 + x2
POL(b) = 0
POL(c(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(f(x1, x2, x3)) = [1] + x1 + x2
POL(mark(x1)) = [1] + [2]x1
Tuples:
a__f(a, z0, z0) → a__f(z0, a__b, b)
a__f(z0, z1, z2) → f(z0, z1, z2)
a__b → a
a__b → b
mark(f(z0, z1, z2)) → a__f(z0, mark(z1), z2)
mark(b) → a__b
mark(a) → a
S tuples:
MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
A__F(a, z0, z0) → c(A__F(z0, a__b, b))
K tuples:
A__F(a, z0, z0) → c(A__F(z0, a__b, b))
Defined Rule Symbols:
MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
a__f, a__b, mark
MARK, A__F
c4, c
We considered the (Usable) Rules:none
A__F(a, z0, z0) → c(A__F(z0, a__b, b))
The order we found is given by the following interpretation:
MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
A__F(a, z0, z0) → c(A__F(z0, a__b, b))
POL(A__F(x1, x2, x3)) = x1 + x3
POL(MARK(x1)) = x1
POL(a) = [1]
POL(a__b) = 0
POL(a__f(x1, x2, x3)) = 0
POL(b) = 0
POL(c(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(f(x1, x2, x3)) = x1 + x2 + x3
POL(mark(x1)) = 0
Tuples:
a__f(a, z0, z0) → a__f(z0, a__b, b)
a__f(z0, z1, z2) → f(z0, z1, z2)
a__b → a
a__b → b
mark(f(z0, z1, z2)) → a__f(z0, mark(z1), z2)
mark(b) → a__b
mark(a) → a
S tuples:none
MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
A__F(a, z0, z0) → c(A__F(z0, a__b, b))
Defined Rule Symbols:
MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
A__F(a, z0, z0) → c(A__F(z0, a__b, b))
a__f, a__b, mark
MARK, A__F
c4, c