0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 3 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 BOUNDS(1, 1)
filter(cons(X), 0, M) → cons(0)
filter(cons(X), s(N), M) → cons(X)
sieve(cons(0)) → cons(0)
sieve(cons(s(N))) → cons(s(N))
nats(N) → cons(N)
zprimes → sieve(nats(s(s(0))))
As the TRS is a non-duplicating overlay system, we have rc = irc.
filter(cons(X), 0, M) → cons(0)
filter(cons(X), s(N), M) → cons(X)
sieve(cons(0)) → cons(0)
sieve(cons(s(N))) → cons(s(N))
nats(N) → cons(N)
zprimes → sieve(nats(s(s(0))))
Tuples:
filter(cons(z0), 0, z1) → cons(0)
filter(cons(z0), s(z1), z2) → cons(z0)
sieve(cons(0)) → cons(0)
sieve(cons(s(z0))) → cons(s(z0))
nats(z0) → cons(z0)
zprimes → sieve(nats(s(s(0))))
S tuples:
FILTER(cons(z0), 0, z1) → c
FILTER(cons(z0), s(z1), z2) → c1
SIEVE(cons(0)) → c2
SIEVE(cons(s(z0))) → c3
NATS(z0) → c4
ZPRIMES → c5(SIEVE(nats(s(s(0)))), NATS(s(s(0))))
K tuples:none
FILTER(cons(z0), 0, z1) → c
FILTER(cons(z0), s(z1), z2) → c1
SIEVE(cons(0)) → c2
SIEVE(cons(s(z0))) → c3
NATS(z0) → c4
ZPRIMES → c5(SIEVE(nats(s(s(0)))), NATS(s(s(0))))
filter, sieve, nats, zprimes
FILTER, SIEVE, NATS, ZPRIMES
c, c1, c2, c3, c4, c5
FILTER(cons(z0), s(z1), z2) → c1
FILTER(cons(z0), 0, z1) → c
SIEVE(cons(s(z0))) → c3
NATS(z0) → c4
SIEVE(cons(0)) → c2
ZPRIMES → c5(SIEVE(nats(s(s(0)))), NATS(s(s(0))))
Tuples:none
filter(cons(z0), 0, z1) → cons(0)
filter(cons(z0), s(z1), z2) → cons(z0)
sieve(cons(0)) → cons(0)
sieve(cons(s(z0))) → cons(s(z0))
nats(z0) → cons(z0)
zprimes → sieve(nats(s(s(0))))
filter, sieve, nats, zprimes