* Step 1: DependencyPairs WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2nd(cons(X,XS)) -> head(activate(XS))
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            activate(n__take(X1,X2)) -> take(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            head(cons(X,XS)) -> X
            sel(0(),cons(X,XS)) -> X
            sel(s(N),cons(X,XS)) -> sel(N,activate(XS))
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
            take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
        - Signature:
            {2nd/1,activate/1,from/1,head/1,sel/2,take/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1}
        - Obligation:
             runtime complexity wrt. defined symbols {2nd,activate,from,head,sel,take} and constructors {0,cons,n__from
            ,n__take,nil,s}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following weak dependency pairs:
        
        Strict DPs
          2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
          activate#(X) -> c_2(X)
          activate#(n__from(X)) -> c_3(from#(X))
          activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
          from#(X) -> c_5(X,X)
          from#(X) -> c_6(X)
          head#(cons(X,XS)) -> c_7(X)
          sel#(0(),cons(X,XS)) -> c_8(X)
          sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)))
          take#(X1,X2) -> c_10(X1,X2)
          take#(0(),XS) -> c_11()
          take#(s(N),cons(X,XS)) -> c_12(X,N,activate#(XS))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
            activate#(X) -> c_2(X)
            activate#(n__from(X)) -> c_3(from#(X))
            activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
            from#(X) -> c_5(X,X)
            from#(X) -> c_6(X)
            head#(cons(X,XS)) -> c_7(X)
            sel#(0(),cons(X,XS)) -> c_8(X)
            sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)))
            take#(X1,X2) -> c_10(X1,X2)
            take#(0(),XS) -> c_11()
            take#(s(N),cons(X,XS)) -> c_12(X,N,activate#(XS))
        - Strict TRS:
            2nd(cons(X,XS)) -> head(activate(XS))
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            activate(n__take(X1,X2)) -> take(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            head(cons(X,XS)) -> X
            sel(0(),cons(X,XS)) -> X
            sel(s(N),cons(X,XS)) -> sel(N,activate(XS))
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
            take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
        - Signature:
            {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0
            ,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/0
            ,c_12/3}
        - Obligation:
             runtime complexity wrt. defined symbols {2nd#,activate#,from#,head#,sel#,take#} and constructors {0,cons
            ,n__from,n__take,nil,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          activate(X) -> X
          activate(n__from(X)) -> from(X)
          activate(n__take(X1,X2)) -> take(X1,X2)
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
          take(X1,X2) -> n__take(X1,X2)
          take(0(),XS) -> nil()
          take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
          2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
          activate#(X) -> c_2(X)
          activate#(n__from(X)) -> c_3(from#(X))
          activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
          from#(X) -> c_5(X,X)
          from#(X) -> c_6(X)
          head#(cons(X,XS)) -> c_7(X)
          sel#(0(),cons(X,XS)) -> c_8(X)
          sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)))
          take#(X1,X2) -> c_10(X1,X2)
          take#(0(),XS) -> c_11()
          take#(s(N),cons(X,XS)) -> c_12(X,N,activate#(XS))
* Step 3: PredecessorEstimation WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
            activate#(X) -> c_2(X)
            activate#(n__from(X)) -> c_3(from#(X))
            activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
            from#(X) -> c_5(X,X)
            from#(X) -> c_6(X)
            head#(cons(X,XS)) -> c_7(X)
            sel#(0(),cons(X,XS)) -> c_8(X)
            sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)))
            take#(X1,X2) -> c_10(X1,X2)
            take#(0(),XS) -> c_11()
            take#(s(N),cons(X,XS)) -> c_12(X,N,activate#(XS))
        - Strict TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            activate(n__take(X1,X2)) -> take(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
            take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
        - Signature:
            {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0
            ,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/0
            ,c_12/3}
        - Obligation:
             runtime complexity wrt. defined symbols {2nd#,activate#,from#,head#,sel#,take#} and constructors {0,cons
            ,n__from,n__take,nil,s}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {11}
        by application of
          Pre({11}) = {2,4,5,6,7,8,10,12}.
        Here rules are labelled as follows:
          1: 2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
          2: activate#(X) -> c_2(X)
          3: activate#(n__from(X)) -> c_3(from#(X))
          4: activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
          5: from#(X) -> c_5(X,X)
          6: from#(X) -> c_6(X)
          7: head#(cons(X,XS)) -> c_7(X)
          8: sel#(0(),cons(X,XS)) -> c_8(X)
          9: sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)))
          10: take#(X1,X2) -> c_10(X1,X2)
          11: take#(0(),XS) -> c_11()
          12: take#(s(N),cons(X,XS)) -> c_12(X,N,activate#(XS))
* Step 4: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
            activate#(X) -> c_2(X)
            activate#(n__from(X)) -> c_3(from#(X))
            activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
            from#(X) -> c_5(X,X)
            from#(X) -> c_6(X)
            head#(cons(X,XS)) -> c_7(X)
            sel#(0(),cons(X,XS)) -> c_8(X)
            sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)))
            take#(X1,X2) -> c_10(X1,X2)
            take#(s(N),cons(X,XS)) -> c_12(X,N,activate#(XS))
        - Strict TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            activate(n__take(X1,X2)) -> take(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
            take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
        - Weak DPs:
            take#(0(),XS) -> c_11()
        - Signature:
            {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0
            ,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/0
            ,c_12/3}
        - Obligation:
             runtime complexity wrt. defined symbols {2nd#,activate#,from#,head#,sel#,take#} and constructors {0,cons
            ,n__from,n__take,nil,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(activate) = {1},
            uargs(cons) = {2},
            uargs(n__take) = {2},
            uargs(take) = {2},
            uargs(head#) = {1},
            uargs(sel#) = {2},
            uargs(c_1) = {1},
            uargs(c_3) = {1},
            uargs(c_4) = {1},
            uargs(c_9) = {1},
            uargs(c_12) = {3}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                    p(0) = [0]         
                  p(2nd) = [0]         
             p(activate) = [1] x1 + [0]
                 p(cons) = [1] x2 + [1]
                 p(from) = [0]         
                 p(head) = [0]         
              p(n__from) = [0]         
              p(n__take) = [1] x2 + [0]
                  p(nil) = [0]         
                    p(s) = [1] x1 + [0]
                  p(sel) = [0]         
                 p(take) = [1] x2 + [0]
                 p(2nd#) = [5] x1 + [0]
            p(activate#) = [1] x1 + [0]
                p(from#) = [0]         
                p(head#) = [1] x1 + [0]
                 p(sel#) = [1] x2 + [0]
                p(take#) = [1] x2 + [0]
                  p(c_1) = [1] x1 + [0]
                  p(c_2) = [1] x1 + [0]
                  p(c_3) = [1] x1 + [0]
                  p(c_4) = [1] x1 + [0]
                  p(c_5) = [0]         
                  p(c_6) = [0]         
                  p(c_7) = [0]         
                  p(c_8) = [0]         
                  p(c_9) = [1] x1 + [0]
                 p(c_10) = [1] x2 + [0]
                 p(c_11) = [0]         
                 p(c_12) = [1] x3 + [0]
          
          Following rules are strictly oriented:
                2nd#(cons(X,XS)) = [5] XS + [5]             
                                 > [1] XS + [0]             
                                 = c_1(head#(activate(XS))) 
          
               head#(cons(X,XS)) = [1] XS + [1]             
                                 > [0]                      
                                 = c_7(X)                   
          
            sel#(0(),cons(X,XS)) = [1] XS + [1]             
                                 > [0]                      
                                 = c_8(X)                   
          
           sel#(s(N),cons(X,XS)) = [1] XS + [1]             
                                 > [1] XS + [0]             
                                 = c_9(sel#(N,activate(XS)))
          
          take#(s(N),cons(X,XS)) = [1] XS + [1]             
                                 > [1] XS + [0]             
                                 = c_12(X,N,activate#(XS))  
          
          
          Following rules are (at-least) weakly oriented:
                       activate#(X) =  [1] X + [0]                    
                                    >= [1] X + [0]                    
                                    =  c_2(X)                         
          
              activate#(n__from(X)) =  [0]                            
                                    >= [0]                            
                                    =  c_3(from#(X))                  
          
          activate#(n__take(X1,X2)) =  [1] X2 + [0]                   
                                    >= [1] X2 + [0]                   
                                    =  c_4(take#(X1,X2))              
          
                           from#(X) =  [0]                            
                                    >= [0]                            
                                    =  c_5(X,X)                       
          
                           from#(X) =  [0]                            
                                    >= [0]                            
                                    =  c_6(X)                         
          
                       take#(X1,X2) =  [1] X2 + [0]                   
                                    >= [1] X2 + [0]                   
                                    =  c_10(X1,X2)                    
          
                      take#(0(),XS) =  [1] XS + [0]                   
                                    >= [0]                            
                                    =  c_11()                         
          
                        activate(X) =  [1] X + [0]                    
                                    >= [1] X + [0]                    
                                    =  X                              
          
               activate(n__from(X)) =  [0]                            
                                    >= [0]                            
                                    =  from(X)                        
          
           activate(n__take(X1,X2)) =  [1] X2 + [0]                   
                                    >= [1] X2 + [0]                   
                                    =  take(X1,X2)                    
          
                            from(X) =  [0]                            
                                    >= [1]                            
                                    =  cons(X,n__from(s(X)))          
          
                            from(X) =  [0]                            
                                    >= [0]                            
                                    =  n__from(X)                     
          
                        take(X1,X2) =  [1] X2 + [0]                   
                                    >= [1] X2 + [0]                   
                                    =  n__take(X1,X2)                 
          
                       take(0(),XS) =  [1] XS + [0]                   
                                    >= [0]                            
                                    =  nil()                          
          
              take(s(N),cons(X,XS)) =  [1] XS + [1]                   
                                    >= [1] XS + [1]                   
                                    =  cons(X,n__take(N,activate(XS)))
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 5: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(X) -> c_2(X)
            activate#(n__from(X)) -> c_3(from#(X))
            activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
            from#(X) -> c_5(X,X)
            from#(X) -> c_6(X)
            take#(X1,X2) -> c_10(X1,X2)
        - Strict TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            activate(n__take(X1,X2)) -> take(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
            take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
        - Weak DPs:
            2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
            head#(cons(X,XS)) -> c_7(X)
            sel#(0(),cons(X,XS)) -> c_8(X)
            sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)))
            take#(0(),XS) -> c_11()
            take#(s(N),cons(X,XS)) -> c_12(X,N,activate#(XS))
        - Signature:
            {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0
            ,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/0
            ,c_12/3}
        - Obligation:
             runtime complexity wrt. defined symbols {2nd#,activate#,from#,head#,sel#,take#} and constructors {0,cons
            ,n__from,n__take,nil,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(activate) = {1},
            uargs(cons) = {2},
            uargs(n__take) = {2},
            uargs(take) = {2},
            uargs(head#) = {1},
            uargs(sel#) = {2},
            uargs(c_1) = {1},
            uargs(c_3) = {1},
            uargs(c_4) = {1},
            uargs(c_9) = {1},
            uargs(c_12) = {3}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                    p(0) = [0]         
                  p(2nd) = [0]         
             p(activate) = [1] x1 + [0]
                 p(cons) = [1] x2 + [6]
                 p(from) = [7]         
                 p(head) = [1]         
              p(n__from) = [0]         
              p(n__take) = [1] x2 + [0]
                  p(nil) = [0]         
                    p(s) = [0]         
                  p(sel) = [0]         
                 p(take) = [1] x2 + [0]
                 p(2nd#) = [1] x1 + [2]
            p(activate#) = [2] x1 + [5]
                p(from#) = [0]         
                p(head#) = [1] x1 + [1]
                 p(sel#) = [1] x2 + [0]
                p(take#) = [2] x2 + [3]
                  p(c_1) = [1] x1 + [7]
                  p(c_2) = [2] x1 + [4]
                  p(c_3) = [1] x1 + [0]
                  p(c_4) = [1] x1 + [0]
                  p(c_5) = [0]         
                  p(c_6) = [0]         
                  p(c_7) = [7]         
                  p(c_8) = [0]         
                  p(c_9) = [1] x1 + [0]
                 p(c_10) = [2] x2 + [0]
                 p(c_11) = [2]         
                 p(c_12) = [1] x3 + [5]
          
          Following rules are strictly oriented:
                       activate#(X) = [2] X + [5]          
                                    > [2] X + [4]          
                                    = c_2(X)               
          
              activate#(n__from(X)) = [5]                  
                                    > [0]                  
                                    = c_3(from#(X))        
          
          activate#(n__take(X1,X2)) = [2] X2 + [5]         
                                    > [2] X2 + [3]         
                                    = c_4(take#(X1,X2))    
          
                       take#(X1,X2) = [2] X2 + [3]         
                                    > [2] X2 + [0]         
                                    = c_10(X1,X2)          
          
                            from(X) = [7]                  
                                    > [6]                  
                                    = cons(X,n__from(s(X)))
          
                            from(X) = [7]                  
                                    > [0]                  
                                    = n__from(X)           
          
          
          Following rules are (at-least) weakly oriented:
                  2nd#(cons(X,XS)) =  [1] XS + [8]                   
                                   >= [1] XS + [8]                   
                                   =  c_1(head#(activate(XS)))       
          
                          from#(X) =  [0]                            
                                   >= [0]                            
                                   =  c_5(X,X)                       
          
                          from#(X) =  [0]                            
                                   >= [0]                            
                                   =  c_6(X)                         
          
                 head#(cons(X,XS)) =  [1] XS + [7]                   
                                   >= [7]                            
                                   =  c_7(X)                         
          
              sel#(0(),cons(X,XS)) =  [1] XS + [6]                   
                                   >= [0]                            
                                   =  c_8(X)                         
          
             sel#(s(N),cons(X,XS)) =  [1] XS + [6]                   
                                   >= [1] XS + [0]                   
                                   =  c_9(sel#(N,activate(XS)))      
          
                     take#(0(),XS) =  [2] XS + [3]                   
                                   >= [2]                            
                                   =  c_11()                         
          
            take#(s(N),cons(X,XS)) =  [2] XS + [15]                  
                                   >= [2] XS + [10]                  
                                   =  c_12(X,N,activate#(XS))        
          
                       activate(X) =  [1] X + [0]                    
                                   >= [1] X + [0]                    
                                   =  X                              
          
              activate(n__from(X)) =  [0]                            
                                   >= [7]                            
                                   =  from(X)                        
          
          activate(n__take(X1,X2)) =  [1] X2 + [0]                   
                                   >= [1] X2 + [0]                   
                                   =  take(X1,X2)                    
          
                       take(X1,X2) =  [1] X2 + [0]                   
                                   >= [1] X2 + [0]                   
                                   =  n__take(X1,X2)                 
          
                      take(0(),XS) =  [1] XS + [0]                   
                                   >= [0]                            
                                   =  nil()                          
          
             take(s(N),cons(X,XS)) =  [1] XS + [6]                   
                                   >= [1] XS + [6]                   
                                   =  cons(X,n__take(N,activate(XS)))
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 6: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            from#(X) -> c_5(X,X)
            from#(X) -> c_6(X)
        - Strict TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            activate(n__take(X1,X2)) -> take(X1,X2)
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
            take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
        - Weak DPs:
            2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
            activate#(X) -> c_2(X)
            activate#(n__from(X)) -> c_3(from#(X))
            activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
            head#(cons(X,XS)) -> c_7(X)
            sel#(0(),cons(X,XS)) -> c_8(X)
            sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)))
            take#(X1,X2) -> c_10(X1,X2)
            take#(0(),XS) -> c_11()
            take#(s(N),cons(X,XS)) -> c_12(X,N,activate#(XS))
        - Weak TRS:
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
        - Signature:
            {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0
            ,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/0
            ,c_12/3}
        - Obligation:
             runtime complexity wrt. defined symbols {2nd#,activate#,from#,head#,sel#,take#} and constructors {0,cons
            ,n__from,n__take,nil,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(activate) = {1},
            uargs(cons) = {2},
            uargs(n__take) = {2},
            uargs(take) = {2},
            uargs(head#) = {1},
            uargs(sel#) = {2},
            uargs(c_1) = {1},
            uargs(c_3) = {1},
            uargs(c_4) = {1},
            uargs(c_9) = {1},
            uargs(c_12) = {3}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                    p(0) = [0]         
                  p(2nd) = [0]         
             p(activate) = [1] x1 + [3]
                 p(cons) = [1] x2 + [4]
                 p(from) = [4]         
                 p(head) = [0]         
              p(n__from) = [0]         
              p(n__take) = [1] x2 + [4]
                  p(nil) = [0]         
                    p(s) = [0]         
                  p(sel) = [0]         
                 p(take) = [1] x2 + [0]
                 p(2nd#) = [2] x1 + [0]
            p(activate#) = [0]         
                p(from#) = [0]         
                p(head#) = [1] x1 + [2]
                 p(sel#) = [1] x2 + [6]
                p(take#) = [0]         
                  p(c_1) = [1] x1 + [0]
                  p(c_2) = [0]         
                  p(c_3) = [1] x1 + [0]
                  p(c_4) = [1] x1 + [0]
                  p(c_5) = [0]         
                  p(c_6) = [2]         
                  p(c_7) = [0]         
                  p(c_8) = [1]         
                  p(c_9) = [1] x1 + [1]
                 p(c_10) = [0]         
                 p(c_11) = [0]         
                 p(c_12) = [1] x3 + [0]
          
          Following rules are strictly oriented:
                       activate(X) = [1] X + [3] 
                                   > [1] X + [0] 
                                   = X           
          
          activate(n__take(X1,X2)) = [1] X2 + [7]
                                   > [1] X2 + [0]
                                   = take(X1,X2) 
          
          
          Following rules are (at-least) weakly oriented:
                   2nd#(cons(X,XS)) =  [2] XS + [8]                   
                                    >= [1] XS + [5]                   
                                    =  c_1(head#(activate(XS)))       
          
                       activate#(X) =  [0]                            
                                    >= [0]                            
                                    =  c_2(X)                         
          
              activate#(n__from(X)) =  [0]                            
                                    >= [0]                            
                                    =  c_3(from#(X))                  
          
          activate#(n__take(X1,X2)) =  [0]                            
                                    >= [0]                            
                                    =  c_4(take#(X1,X2))              
          
                           from#(X) =  [0]                            
                                    >= [0]                            
                                    =  c_5(X,X)                       
          
                           from#(X) =  [0]                            
                                    >= [2]                            
                                    =  c_6(X)                         
          
                  head#(cons(X,XS)) =  [1] XS + [6]                   
                                    >= [0]                            
                                    =  c_7(X)                         
          
               sel#(0(),cons(X,XS)) =  [1] XS + [10]                  
                                    >= [1]                            
                                    =  c_8(X)                         
          
              sel#(s(N),cons(X,XS)) =  [1] XS + [10]                  
                                    >= [1] XS + [10]                  
                                    =  c_9(sel#(N,activate(XS)))      
          
                       take#(X1,X2) =  [0]                            
                                    >= [0]                            
                                    =  c_10(X1,X2)                    
          
                      take#(0(),XS) =  [0]                            
                                    >= [0]                            
                                    =  c_11()                         
          
             take#(s(N),cons(X,XS)) =  [0]                            
                                    >= [0]                            
                                    =  c_12(X,N,activate#(XS))        
          
               activate(n__from(X)) =  [3]                            
                                    >= [4]                            
                                    =  from(X)                        
          
                            from(X) =  [4]                            
                                    >= [4]                            
                                    =  cons(X,n__from(s(X)))          
          
                            from(X) =  [4]                            
                                    >= [0]                            
                                    =  n__from(X)                     
          
                        take(X1,X2) =  [1] X2 + [0]                   
                                    >= [1] X2 + [4]                   
                                    =  n__take(X1,X2)                 
          
                       take(0(),XS) =  [1] XS + [0]                   
                                    >= [0]                            
                                    =  nil()                          
          
              take(s(N),cons(X,XS)) =  [1] XS + [4]                   
                                    >= [1] XS + [11]                  
                                    =  cons(X,n__take(N,activate(XS)))
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 7: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            from#(X) -> c_5(X,X)
            from#(X) -> c_6(X)
        - Strict TRS:
            activate(n__from(X)) -> from(X)
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
            take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
        - Weak DPs:
            2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
            activate#(X) -> c_2(X)
            activate#(n__from(X)) -> c_3(from#(X))
            activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
            head#(cons(X,XS)) -> c_7(X)
            sel#(0(),cons(X,XS)) -> c_8(X)
            sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)))
            take#(X1,X2) -> c_10(X1,X2)
            take#(0(),XS) -> c_11()
            take#(s(N),cons(X,XS)) -> c_12(X,N,activate#(XS))
        - Weak TRS:
            activate(X) -> X
            activate(n__take(X1,X2)) -> take(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
        - Signature:
            {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0
            ,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/0
            ,c_12/3}
        - Obligation:
             runtime complexity wrt. defined symbols {2nd#,activate#,from#,head#,sel#,take#} and constructors {0,cons
            ,n__from,n__take,nil,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(activate) = {1},
            uargs(cons) = {2},
            uargs(n__take) = {2},
            uargs(take) = {2},
            uargs(head#) = {1},
            uargs(sel#) = {2},
            uargs(c_1) = {1},
            uargs(c_3) = {1},
            uargs(c_4) = {1},
            uargs(c_9) = {1},
            uargs(c_12) = {3}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                    p(0) = [0]                  
                  p(2nd) = [0]                  
             p(activate) = [1] x1 + [2]         
                 p(cons) = [1] x2 + [1]         
                 p(from) = [1]                  
                 p(head) = [1] x1 + [2]         
              p(n__from) = [0]                  
              p(n__take) = [1] x2 + [2]         
                  p(nil) = [1]                  
                    p(s) = [1] x1 + [2]         
                  p(sel) = [1] x1 + [0]         
                 p(take) = [1] x2 + [0]         
                 p(2nd#) = [1] x1 + [6]         
            p(activate#) = [4]                  
                p(from#) = [0]                  
                p(head#) = [1] x1 + [2]         
                 p(sel#) = [1] x1 + [1] x2 + [4]
                p(take#) = [4]                  
                  p(c_1) = [1] x1 + [3]         
                  p(c_2) = [1]                  
                  p(c_3) = [1] x1 + [0]         
                  p(c_4) = [1] x1 + [0]         
                  p(c_5) = [1]                  
                  p(c_6) = [1]                  
                  p(c_7) = [0]                  
                  p(c_8) = [4]                  
                  p(c_9) = [1] x1 + [0]         
                 p(c_10) = [0]                  
                 p(c_11) = [4]                  
                 p(c_12) = [1] x3 + [0]         
          
          Following rules are strictly oriented:
          activate(n__from(X)) = [2]    
                               > [1]    
                               = from(X)
          
          
          Following rules are (at-least) weakly oriented:
                   2nd#(cons(X,XS)) =  [1] XS + [7]                   
                                    >= [1] XS + [7]                   
                                    =  c_1(head#(activate(XS)))       
          
                       activate#(X) =  [4]                            
                                    >= [1]                            
                                    =  c_2(X)                         
          
              activate#(n__from(X)) =  [4]                            
                                    >= [0]                            
                                    =  c_3(from#(X))                  
          
          activate#(n__take(X1,X2)) =  [4]                            
                                    >= [4]                            
                                    =  c_4(take#(X1,X2))              
          
                           from#(X) =  [0]                            
                                    >= [1]                            
                                    =  c_5(X,X)                       
          
                           from#(X) =  [0]                            
                                    >= [1]                            
                                    =  c_6(X)                         
          
                  head#(cons(X,XS)) =  [1] XS + [3]                   
                                    >= [0]                            
                                    =  c_7(X)                         
          
               sel#(0(),cons(X,XS)) =  [1] XS + [5]                   
                                    >= [4]                            
                                    =  c_8(X)                         
          
              sel#(s(N),cons(X,XS)) =  [1] N + [1] XS + [7]           
                                    >= [1] N + [1] XS + [6]           
                                    =  c_9(sel#(N,activate(XS)))      
          
                       take#(X1,X2) =  [4]                            
                                    >= [0]                            
                                    =  c_10(X1,X2)                    
          
                      take#(0(),XS) =  [4]                            
                                    >= [4]                            
                                    =  c_11()                         
          
             take#(s(N),cons(X,XS)) =  [4]                            
                                    >= [4]                            
                                    =  c_12(X,N,activate#(XS))        
          
                        activate(X) =  [1] X + [2]                    
                                    >= [1] X + [0]                    
                                    =  X                              
          
           activate(n__take(X1,X2)) =  [1] X2 + [4]                   
                                    >= [1] X2 + [0]                   
                                    =  take(X1,X2)                    
          
                            from(X) =  [1]                            
                                    >= [1]                            
                                    =  cons(X,n__from(s(X)))          
          
                            from(X) =  [1]                            
                                    >= [0]                            
                                    =  n__from(X)                     
          
                        take(X1,X2) =  [1] X2 + [0]                   
                                    >= [1] X2 + [2]                   
                                    =  n__take(X1,X2)                 
          
                       take(0(),XS) =  [1] XS + [0]                   
                                    >= [1]                            
                                    =  nil()                          
          
              take(s(N),cons(X,XS)) =  [1] XS + [1]                   
                                    >= [1] XS + [5]                   
                                    =  cons(X,n__take(N,activate(XS)))
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 8: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            from#(X) -> c_5(X,X)
            from#(X) -> c_6(X)
        - Strict TRS:
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
            take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
        - Weak DPs:
            2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
            activate#(X) -> c_2(X)
            activate#(n__from(X)) -> c_3(from#(X))
            activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
            head#(cons(X,XS)) -> c_7(X)
            sel#(0(),cons(X,XS)) -> c_8(X)
            sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)))
            take#(X1,X2) -> c_10(X1,X2)
            take#(0(),XS) -> c_11()
            take#(s(N),cons(X,XS)) -> c_12(X,N,activate#(XS))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            activate(n__take(X1,X2)) -> take(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
        - Signature:
            {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0
            ,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/0
            ,c_12/3}
        - Obligation:
             runtime complexity wrt. defined symbols {2nd#,activate#,from#,head#,sel#,take#} and constructors {0,cons
            ,n__from,n__take,nil,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(activate) = {1},
            uargs(cons) = {2},
            uargs(n__take) = {2},
            uargs(take) = {2},
            uargs(head#) = {1},
            uargs(sel#) = {2},
            uargs(c_1) = {1},
            uargs(c_3) = {1},
            uargs(c_4) = {1},
            uargs(c_9) = {1},
            uargs(c_12) = {3}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                    p(0) = [0]                  
                  p(2nd) = [4]                  
             p(activate) = [1] x1 + [0]         
                 p(cons) = [1] x2 + [0]         
                 p(from) = [0]                  
                 p(head) = [0]                  
              p(n__from) = [0]                  
              p(n__take) = [1] x2 + [3]         
                  p(nil) = [0]                  
                    p(s) = [0]                  
                  p(sel) = [1] x1 + [4] x2 + [1]
                 p(take) = [1] x2 + [3]         
                 p(2nd#) = [2] x1 + [0]         
            p(activate#) = [2] x1 + [1]         
                p(from#) = [1]                  
                p(head#) = [1] x1 + [0]         
                 p(sel#) = [1] x2 + [0]         
                p(take#) = [2] x2 + [7]         
                  p(c_1) = [1] x1 + [0]         
                  p(c_2) = [2] x1 + [1]         
                  p(c_3) = [1] x1 + [0]         
                  p(c_4) = [1] x1 + [0]         
                  p(c_5) = [0]                  
                  p(c_6) = [0]                  
                  p(c_7) = [0]                  
                  p(c_8) = [0]                  
                  p(c_9) = [1] x1 + [0]         
                 p(c_10) = [2] x2 + [7]         
                 p(c_11) = [7]                  
                 p(c_12) = [1] x3 + [6]         
          
          Following rules are strictly oriented:
              from#(X) = [1]         
                       > [0]         
                       = c_5(X,X)    
          
              from#(X) = [1]         
                       > [0]         
                       = c_6(X)      
          
          take(0(),XS) = [1] XS + [3]
                       > [0]         
                       = nil()       
          
          
          Following rules are (at-least) weakly oriented:
                   2nd#(cons(X,XS)) =  [2] XS + [0]                   
                                    >= [1] XS + [0]                   
                                    =  c_1(head#(activate(XS)))       
          
                       activate#(X) =  [2] X + [1]                    
                                    >= [2] X + [1]                    
                                    =  c_2(X)                         
          
              activate#(n__from(X)) =  [1]                            
                                    >= [1]                            
                                    =  c_3(from#(X))                  
          
          activate#(n__take(X1,X2)) =  [2] X2 + [7]                   
                                    >= [2] X2 + [7]                   
                                    =  c_4(take#(X1,X2))              
          
                  head#(cons(X,XS)) =  [1] XS + [0]                   
                                    >= [0]                            
                                    =  c_7(X)                         
          
               sel#(0(),cons(X,XS)) =  [1] XS + [0]                   
                                    >= [0]                            
                                    =  c_8(X)                         
          
              sel#(s(N),cons(X,XS)) =  [1] XS + [0]                   
                                    >= [1] XS + [0]                   
                                    =  c_9(sel#(N,activate(XS)))      
          
                       take#(X1,X2) =  [2] X2 + [7]                   
                                    >= [2] X2 + [7]                   
                                    =  c_10(X1,X2)                    
          
                      take#(0(),XS) =  [2] XS + [7]                   
                                    >= [7]                            
                                    =  c_11()                         
          
             take#(s(N),cons(X,XS)) =  [2] XS + [7]                   
                                    >= [2] XS + [7]                   
                                    =  c_12(X,N,activate#(XS))        
          
                        activate(X) =  [1] X + [0]                    
                                    >= [1] X + [0]                    
                                    =  X                              
          
               activate(n__from(X)) =  [0]                            
                                    >= [0]                            
                                    =  from(X)                        
          
           activate(n__take(X1,X2)) =  [1] X2 + [3]                   
                                    >= [1] X2 + [3]                   
                                    =  take(X1,X2)                    
          
                            from(X) =  [0]                            
                                    >= [0]                            
                                    =  cons(X,n__from(s(X)))          
          
                            from(X) =  [0]                            
                                    >= [0]                            
                                    =  n__from(X)                     
          
                        take(X1,X2) =  [1] X2 + [3]                   
                                    >= [1] X2 + [3]                   
                                    =  n__take(X1,X2)                 
          
              take(s(N),cons(X,XS)) =  [1] XS + [3]                   
                                    >= [1] XS + [3]                   
                                    =  cons(X,n__take(N,activate(XS)))
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 9: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            take(X1,X2) -> n__take(X1,X2)
            take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
        - Weak DPs:
            2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
            activate#(X) -> c_2(X)
            activate#(n__from(X)) -> c_3(from#(X))
            activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
            from#(X) -> c_5(X,X)
            from#(X) -> c_6(X)
            head#(cons(X,XS)) -> c_7(X)
            sel#(0(),cons(X,XS)) -> c_8(X)
            sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)))
            take#(X1,X2) -> c_10(X1,X2)
            take#(0(),XS) -> c_11()
            take#(s(N),cons(X,XS)) -> c_12(X,N,activate#(XS))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            activate(n__take(X1,X2)) -> take(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            take(0(),XS) -> nil()
        - Signature:
            {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0
            ,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/0
            ,c_12/3}
        - Obligation:
             runtime complexity wrt. defined symbols {2nd#,activate#,from#,head#,sel#,take#} and constructors {0,cons
            ,n__from,n__take,nil,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(activate) = {1},
            uargs(cons) = {2},
            uargs(n__take) = {2},
            uargs(take) = {2},
            uargs(head#) = {1},
            uargs(sel#) = {2},
            uargs(c_1) = {1},
            uargs(c_3) = {1},
            uargs(c_4) = {1},
            uargs(c_9) = {1},
            uargs(c_12) = {3}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                    p(0) = [1]                  
                  p(2nd) = [0]                  
             p(activate) = [1] x1 + [2]         
                 p(cons) = [1] x2 + [0]         
                 p(from) = [2]                  
                 p(head) = [0]                  
              p(n__from) = [0]                  
              p(n__take) = [1] x1 + [1] x2 + [3]
                  p(nil) = [0]                  
                    p(s) = [1] x1 + [2]         
                  p(sel) = [1] x2 + [1]         
                 p(take) = [1] x1 + [1] x2 + [4]
                 p(2nd#) = [2] x1 + [5]         
            p(activate#) = [4] x1 + [2]         
                p(from#) = [0]                  
                p(head#) = [1] x1 + [2]         
                 p(sel#) = [4] x1 + [1] x2 + [0]
                p(take#) = [1] x1 + [4] x2 + [0]
                  p(c_1) = [1] x1 + [0]         
                  p(c_2) = [0]                  
                  p(c_3) = [1] x1 + [0]         
                  p(c_4) = [1] x1 + [0]         
                  p(c_5) = [0]                  
                  p(c_6) = [0]                  
                  p(c_7) = [0]                  
                  p(c_8) = [1]                  
                  p(c_9) = [1] x1 + [0]         
                 p(c_10) = [0]                  
                 p(c_11) = [0]                  
                 p(c_12) = [1] x3 + [0]         
          
          Following rules are strictly oriented:
                    take(X1,X2) = [1] X1 + [1] X2 + [4]          
                                > [1] X1 + [1] X2 + [3]          
                                = n__take(X1,X2)                 
          
          take(s(N),cons(X,XS)) = [1] N + [1] XS + [6]           
                                > [1] N + [1] XS + [5]           
                                = cons(X,n__take(N,activate(XS)))
          
          
          Following rules are (at-least) weakly oriented:
                   2nd#(cons(X,XS)) =  [2] XS + [5]             
                                    >= [1] XS + [4]             
                                    =  c_1(head#(activate(XS))) 
          
                       activate#(X) =  [4] X + [2]              
                                    >= [0]                      
                                    =  c_2(X)                   
          
              activate#(n__from(X)) =  [2]                      
                                    >= [0]                      
                                    =  c_3(from#(X))            
          
          activate#(n__take(X1,X2)) =  [4] X1 + [4] X2 + [14]   
                                    >= [1] X1 + [4] X2 + [0]    
                                    =  c_4(take#(X1,X2))        
          
                           from#(X) =  [0]                      
                                    >= [0]                      
                                    =  c_5(X,X)                 
          
                           from#(X) =  [0]                      
                                    >= [0]                      
                                    =  c_6(X)                   
          
                  head#(cons(X,XS)) =  [1] XS + [2]             
                                    >= [0]                      
                                    =  c_7(X)                   
          
               sel#(0(),cons(X,XS)) =  [1] XS + [4]             
                                    >= [1]                      
                                    =  c_8(X)                   
          
              sel#(s(N),cons(X,XS)) =  [4] N + [1] XS + [8]     
                                    >= [4] N + [1] XS + [2]     
                                    =  c_9(sel#(N,activate(XS)))
          
                       take#(X1,X2) =  [1] X1 + [4] X2 + [0]    
                                    >= [0]                      
                                    =  c_10(X1,X2)              
          
                      take#(0(),XS) =  [4] XS + [1]             
                                    >= [0]                      
                                    =  c_11()                   
          
             take#(s(N),cons(X,XS)) =  [1] N + [4] XS + [2]     
                                    >= [4] XS + [2]             
                                    =  c_12(X,N,activate#(XS))  
          
                        activate(X) =  [1] X + [2]              
                                    >= [1] X + [0]              
                                    =  X                        
          
               activate(n__from(X)) =  [2]                      
                                    >= [2]                      
                                    =  from(X)                  
          
           activate(n__take(X1,X2)) =  [1] X1 + [1] X2 + [5]    
                                    >= [1] X1 + [1] X2 + [4]    
                                    =  take(X1,X2)              
          
                            from(X) =  [2]                      
                                    >= [0]                      
                                    =  cons(X,n__from(s(X)))    
          
                            from(X) =  [2]                      
                                    >= [0]                      
                                    =  n__from(X)               
          
                       take(0(),XS) =  [1] XS + [5]             
                                    >= [0]                      
                                    =  nil()                    
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 10: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
            activate#(X) -> c_2(X)
            activate#(n__from(X)) -> c_3(from#(X))
            activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
            from#(X) -> c_5(X,X)
            from#(X) -> c_6(X)
            head#(cons(X,XS)) -> c_7(X)
            sel#(0(),cons(X,XS)) -> c_8(X)
            sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)))
            take#(X1,X2) -> c_10(X1,X2)
            take#(0(),XS) -> c_11()
            take#(s(N),cons(X,XS)) -> c_12(X,N,activate#(XS))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            activate(n__take(X1,X2)) -> take(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
            take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
        - Signature:
            {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0
            ,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/0
            ,c_12/3}
        - Obligation:
             runtime complexity wrt. defined symbols {2nd#,activate#,from#,head#,sel#,take#} and constructors {0,cons
            ,n__from,n__take,nil,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))