(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__from(X) → cons(mark(X), from(s(X)))
a__head(cons(X, XS)) → mark(X)
a__2nd(cons(X, XS)) → a__head(mark(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__sel(0, cons(X, XS)) → mark(X)
a__sel(s(N), cons(X, XS)) → a__sel(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(head(X)) → a__head(mark(X))
mark(2nd(X)) → a__2nd(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(sel(X1, X2)) → a__sel(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__from(X) → from(X)
a__head(X) → head(X)
a__2nd(X) → 2nd(X)
a__take(X1, X2) → take(X1, X2)
a__sel(X1, X2) → sel(X1, X2)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
mark(from(X)) →+ cons(mark(mark(X)), from(s(mark(X))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [X / from(X)].
The result substitution is [ ].
The rewrite sequence
mark(from(X)) →+ cons(mark(mark(X)), from(s(mark(X))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0].
The pumping substitution is [X / from(X)].
The result substitution is [ ].
(2) BOUNDS(2^n, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a__from(X) → cons(mark(X), from(s(X)))
a__head(cons(X, XS)) → mark(X)
a__2nd(cons(X, XS)) → a__head(mark(XS))
a__take(0', XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__sel(0', cons(X, XS)) → mark(X)
a__sel(s(N), cons(X, XS)) → a__sel(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(head(X)) → a__head(mark(X))
mark(2nd(X)) → a__2nd(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(sel(X1, X2)) → a__sel(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0') → 0'
mark(nil) → nil
a__from(X) → from(X)
a__head(X) → head(X)
a__2nd(X) → 2nd(X)
a__take(X1, X2) → take(X1, X2)
a__sel(X1, X2) → sel(X1, X2)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
a__from(X) → cons(mark(X), from(s(X)))
a__head(cons(X, XS)) → mark(X)
a__2nd(cons(X, XS)) → a__head(mark(XS))
a__take(0', XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__sel(0', cons(X, XS)) → mark(X)
a__sel(s(N), cons(X, XS)) → a__sel(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(head(X)) → a__head(mark(X))
mark(2nd(X)) → a__2nd(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(sel(X1, X2)) → a__sel(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0') → 0'
mark(nil) → nil
a__from(X) → from(X)
a__head(X) → head(X)
a__2nd(X) → 2nd(X)
a__take(X1, X2) → take(X1, X2)
a__sel(X1, X2) → sel(X1, X2)
Types:
a__from :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
cons :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
mark :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
from :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
s :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__head :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__2nd :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__take :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
0' :: s:from:cons:0':nil:take:head:2nd:sel
nil :: s:from:cons:0':nil:take:head:2nd:sel
take :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__sel :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
head :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
2nd :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
sel :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
hole_s:from:cons:0':nil:take:head:2nd:sel1_0 :: s:from:cons:0':nil:take:head:2nd:sel
gen_s:from:cons:0':nil:take:head:2nd:sel2_0 :: Nat → s:from:cons:0':nil:take:head:2nd:sel
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
a__from,
mark,
a__head,
a__2nd,
a__selThey will be analysed ascendingly in the following order:
a__from = mark
a__from = a__head
a__from = a__2nd
a__from = a__sel
mark = a__head
mark = a__2nd
mark = a__sel
a__head = a__2nd
a__head = a__sel
a__2nd = a__sel
(8) Obligation:
TRS:
Rules:
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__head(
cons(
X,
XS)) →
mark(
X)
a__2nd(
cons(
X,
XS)) →
a__head(
mark(
XS))
a__take(
0',
XS) →
nila__take(
s(
N),
cons(
X,
XS)) →
cons(
mark(
X),
take(
N,
XS))
a__sel(
0',
cons(
X,
XS)) →
mark(
X)
a__sel(
s(
N),
cons(
X,
XS)) →
a__sel(
mark(
N),
mark(
XS))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
head(
X)) →
a__head(
mark(
X))
mark(
2nd(
X)) →
a__2nd(
mark(
X))
mark(
take(
X1,
X2)) →
a__take(
mark(
X1),
mark(
X2))
mark(
sel(
X1,
X2)) →
a__sel(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
nil) →
nila__from(
X) →
from(
X)
a__head(
X) →
head(
X)
a__2nd(
X) →
2nd(
X)
a__take(
X1,
X2) →
take(
X1,
X2)
a__sel(
X1,
X2) →
sel(
X1,
X2)
Types:
a__from :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
cons :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
mark :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
from :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
s :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__head :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__2nd :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__take :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
0' :: s:from:cons:0':nil:take:head:2nd:sel
nil :: s:from:cons:0':nil:take:head:2nd:sel
take :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__sel :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
head :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
2nd :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
sel :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
hole_s:from:cons:0':nil:take:head:2nd:sel1_0 :: s:from:cons:0':nil:take:head:2nd:sel
gen_s:from:cons:0':nil:take:head:2nd:sel2_0 :: Nat → s:from:cons:0':nil:take:head:2nd:sel
Generator Equations:
gen_s:from:cons:0':nil:take:head:2nd:sel2_0(0) ⇔ 0'
gen_s:from:cons:0':nil:take:head:2nd:sel2_0(+(x, 1)) ⇔ cons(0', gen_s:from:cons:0':nil:take:head:2nd:sel2_0(x))
The following defined symbols remain to be analysed:
mark, a__from, a__head, a__2nd, a__sel
They will be analysed ascendingly in the following order:
a__from = mark
a__from = a__head
a__from = a__2nd
a__from = a__sel
mark = a__head
mark = a__2nd
mark = a__sel
a__head = a__2nd
a__head = a__sel
a__2nd = a__sel
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol mark.
(10) Obligation:
TRS:
Rules:
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__head(
cons(
X,
XS)) →
mark(
X)
a__2nd(
cons(
X,
XS)) →
a__head(
mark(
XS))
a__take(
0',
XS) →
nila__take(
s(
N),
cons(
X,
XS)) →
cons(
mark(
X),
take(
N,
XS))
a__sel(
0',
cons(
X,
XS)) →
mark(
X)
a__sel(
s(
N),
cons(
X,
XS)) →
a__sel(
mark(
N),
mark(
XS))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
head(
X)) →
a__head(
mark(
X))
mark(
2nd(
X)) →
a__2nd(
mark(
X))
mark(
take(
X1,
X2)) →
a__take(
mark(
X1),
mark(
X2))
mark(
sel(
X1,
X2)) →
a__sel(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
nil) →
nila__from(
X) →
from(
X)
a__head(
X) →
head(
X)
a__2nd(
X) →
2nd(
X)
a__take(
X1,
X2) →
take(
X1,
X2)
a__sel(
X1,
X2) →
sel(
X1,
X2)
Types:
a__from :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
cons :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
mark :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
from :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
s :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__head :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__2nd :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__take :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
0' :: s:from:cons:0':nil:take:head:2nd:sel
nil :: s:from:cons:0':nil:take:head:2nd:sel
take :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__sel :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
head :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
2nd :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
sel :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
hole_s:from:cons:0':nil:take:head:2nd:sel1_0 :: s:from:cons:0':nil:take:head:2nd:sel
gen_s:from:cons:0':nil:take:head:2nd:sel2_0 :: Nat → s:from:cons:0':nil:take:head:2nd:sel
Generator Equations:
gen_s:from:cons:0':nil:take:head:2nd:sel2_0(0) ⇔ 0'
gen_s:from:cons:0':nil:take:head:2nd:sel2_0(+(x, 1)) ⇔ cons(0', gen_s:from:cons:0':nil:take:head:2nd:sel2_0(x))
The following defined symbols remain to be analysed:
a__from, a__head, a__2nd, a__sel
They will be analysed ascendingly in the following order:
a__from = mark
a__from = a__head
a__from = a__2nd
a__from = a__sel
mark = a__head
mark = a__2nd
mark = a__sel
a__head = a__2nd
a__head = a__sel
a__2nd = a__sel
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__from.
(12) Obligation:
TRS:
Rules:
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__head(
cons(
X,
XS)) →
mark(
X)
a__2nd(
cons(
X,
XS)) →
a__head(
mark(
XS))
a__take(
0',
XS) →
nila__take(
s(
N),
cons(
X,
XS)) →
cons(
mark(
X),
take(
N,
XS))
a__sel(
0',
cons(
X,
XS)) →
mark(
X)
a__sel(
s(
N),
cons(
X,
XS)) →
a__sel(
mark(
N),
mark(
XS))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
head(
X)) →
a__head(
mark(
X))
mark(
2nd(
X)) →
a__2nd(
mark(
X))
mark(
take(
X1,
X2)) →
a__take(
mark(
X1),
mark(
X2))
mark(
sel(
X1,
X2)) →
a__sel(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
nil) →
nila__from(
X) →
from(
X)
a__head(
X) →
head(
X)
a__2nd(
X) →
2nd(
X)
a__take(
X1,
X2) →
take(
X1,
X2)
a__sel(
X1,
X2) →
sel(
X1,
X2)
Types:
a__from :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
cons :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
mark :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
from :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
s :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__head :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__2nd :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__take :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
0' :: s:from:cons:0':nil:take:head:2nd:sel
nil :: s:from:cons:0':nil:take:head:2nd:sel
take :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__sel :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
head :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
2nd :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
sel :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
hole_s:from:cons:0':nil:take:head:2nd:sel1_0 :: s:from:cons:0':nil:take:head:2nd:sel
gen_s:from:cons:0':nil:take:head:2nd:sel2_0 :: Nat → s:from:cons:0':nil:take:head:2nd:sel
Generator Equations:
gen_s:from:cons:0':nil:take:head:2nd:sel2_0(0) ⇔ 0'
gen_s:from:cons:0':nil:take:head:2nd:sel2_0(+(x, 1)) ⇔ cons(0', gen_s:from:cons:0':nil:take:head:2nd:sel2_0(x))
The following defined symbols remain to be analysed:
a__head, a__2nd, a__sel
They will be analysed ascendingly in the following order:
a__from = mark
a__from = a__head
a__from = a__2nd
a__from = a__sel
mark = a__head
mark = a__2nd
mark = a__sel
a__head = a__2nd
a__head = a__sel
a__2nd = a__sel
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__head.
(14) Obligation:
TRS:
Rules:
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__head(
cons(
X,
XS)) →
mark(
X)
a__2nd(
cons(
X,
XS)) →
a__head(
mark(
XS))
a__take(
0',
XS) →
nila__take(
s(
N),
cons(
X,
XS)) →
cons(
mark(
X),
take(
N,
XS))
a__sel(
0',
cons(
X,
XS)) →
mark(
X)
a__sel(
s(
N),
cons(
X,
XS)) →
a__sel(
mark(
N),
mark(
XS))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
head(
X)) →
a__head(
mark(
X))
mark(
2nd(
X)) →
a__2nd(
mark(
X))
mark(
take(
X1,
X2)) →
a__take(
mark(
X1),
mark(
X2))
mark(
sel(
X1,
X2)) →
a__sel(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
nil) →
nila__from(
X) →
from(
X)
a__head(
X) →
head(
X)
a__2nd(
X) →
2nd(
X)
a__take(
X1,
X2) →
take(
X1,
X2)
a__sel(
X1,
X2) →
sel(
X1,
X2)
Types:
a__from :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
cons :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
mark :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
from :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
s :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__head :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__2nd :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__take :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
0' :: s:from:cons:0':nil:take:head:2nd:sel
nil :: s:from:cons:0':nil:take:head:2nd:sel
take :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__sel :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
head :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
2nd :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
sel :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
hole_s:from:cons:0':nil:take:head:2nd:sel1_0 :: s:from:cons:0':nil:take:head:2nd:sel
gen_s:from:cons:0':nil:take:head:2nd:sel2_0 :: Nat → s:from:cons:0':nil:take:head:2nd:sel
Generator Equations:
gen_s:from:cons:0':nil:take:head:2nd:sel2_0(0) ⇔ 0'
gen_s:from:cons:0':nil:take:head:2nd:sel2_0(+(x, 1)) ⇔ cons(0', gen_s:from:cons:0':nil:take:head:2nd:sel2_0(x))
The following defined symbols remain to be analysed:
a__2nd, a__sel
They will be analysed ascendingly in the following order:
a__from = mark
a__from = a__head
a__from = a__2nd
a__from = a__sel
mark = a__head
mark = a__2nd
mark = a__sel
a__head = a__2nd
a__head = a__sel
a__2nd = a__sel
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__2nd.
(16) Obligation:
TRS:
Rules:
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__head(
cons(
X,
XS)) →
mark(
X)
a__2nd(
cons(
X,
XS)) →
a__head(
mark(
XS))
a__take(
0',
XS) →
nila__take(
s(
N),
cons(
X,
XS)) →
cons(
mark(
X),
take(
N,
XS))
a__sel(
0',
cons(
X,
XS)) →
mark(
X)
a__sel(
s(
N),
cons(
X,
XS)) →
a__sel(
mark(
N),
mark(
XS))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
head(
X)) →
a__head(
mark(
X))
mark(
2nd(
X)) →
a__2nd(
mark(
X))
mark(
take(
X1,
X2)) →
a__take(
mark(
X1),
mark(
X2))
mark(
sel(
X1,
X2)) →
a__sel(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
nil) →
nila__from(
X) →
from(
X)
a__head(
X) →
head(
X)
a__2nd(
X) →
2nd(
X)
a__take(
X1,
X2) →
take(
X1,
X2)
a__sel(
X1,
X2) →
sel(
X1,
X2)
Types:
a__from :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
cons :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
mark :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
from :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
s :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__head :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__2nd :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__take :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
0' :: s:from:cons:0':nil:take:head:2nd:sel
nil :: s:from:cons:0':nil:take:head:2nd:sel
take :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__sel :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
head :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
2nd :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
sel :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
hole_s:from:cons:0':nil:take:head:2nd:sel1_0 :: s:from:cons:0':nil:take:head:2nd:sel
gen_s:from:cons:0':nil:take:head:2nd:sel2_0 :: Nat → s:from:cons:0':nil:take:head:2nd:sel
Generator Equations:
gen_s:from:cons:0':nil:take:head:2nd:sel2_0(0) ⇔ 0'
gen_s:from:cons:0':nil:take:head:2nd:sel2_0(+(x, 1)) ⇔ cons(0', gen_s:from:cons:0':nil:take:head:2nd:sel2_0(x))
The following defined symbols remain to be analysed:
a__sel
They will be analysed ascendingly in the following order:
a__from = mark
a__from = a__head
a__from = a__2nd
a__from = a__sel
mark = a__head
mark = a__2nd
mark = a__sel
a__head = a__2nd
a__head = a__sel
a__2nd = a__sel
(17) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__sel.
(18) Obligation:
TRS:
Rules:
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__head(
cons(
X,
XS)) →
mark(
X)
a__2nd(
cons(
X,
XS)) →
a__head(
mark(
XS))
a__take(
0',
XS) →
nila__take(
s(
N),
cons(
X,
XS)) →
cons(
mark(
X),
take(
N,
XS))
a__sel(
0',
cons(
X,
XS)) →
mark(
X)
a__sel(
s(
N),
cons(
X,
XS)) →
a__sel(
mark(
N),
mark(
XS))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
head(
X)) →
a__head(
mark(
X))
mark(
2nd(
X)) →
a__2nd(
mark(
X))
mark(
take(
X1,
X2)) →
a__take(
mark(
X1),
mark(
X2))
mark(
sel(
X1,
X2)) →
a__sel(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
nil) →
nila__from(
X) →
from(
X)
a__head(
X) →
head(
X)
a__2nd(
X) →
2nd(
X)
a__take(
X1,
X2) →
take(
X1,
X2)
a__sel(
X1,
X2) →
sel(
X1,
X2)
Types:
a__from :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
cons :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
mark :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
from :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
s :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__head :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__2nd :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__take :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
0' :: s:from:cons:0':nil:take:head:2nd:sel
nil :: s:from:cons:0':nil:take:head:2nd:sel
take :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
a__sel :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
head :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
2nd :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
sel :: s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel → s:from:cons:0':nil:take:head:2nd:sel
hole_s:from:cons:0':nil:take:head:2nd:sel1_0 :: s:from:cons:0':nil:take:head:2nd:sel
gen_s:from:cons:0':nil:take:head:2nd:sel2_0 :: Nat → s:from:cons:0':nil:take:head:2nd:sel
Generator Equations:
gen_s:from:cons:0':nil:take:head:2nd:sel2_0(0) ⇔ 0'
gen_s:from:cons:0':nil:take:head:2nd:sel2_0(+(x, 1)) ⇔ cons(0', gen_s:from:cons:0':nil:take:head:2nd:sel2_0(x))
No more defined symbols left to analyse.