(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(activate(XS))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
from(X) → n__from(X)
s(X) → n__s(X)
take(X1, X2) → n__take(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
activate(n__from(X)) →+ cons(activate(X), n__from(n__s(activate(X))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / n__from(X)].
The result substitution is [ ].
The rewrite sequence
activate(n__from(X)) →+ cons(activate(X), n__from(n__s(activate(X))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0].
The pumping substitution is [X / n__from(X)].
The result substitution is [ ].
(2) BOUNDS(2^n, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(activate(XS))
take(0', XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
sel(0', cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
from(X) → n__from(X)
s(X) → n__s(X)
take(X1, X2) → n__take(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
from(X) → cons(X, n__from(n__s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(activate(XS))
take(0', XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
sel(0', cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
from(X) → n__from(X)
s(X) → n__s(X)
take(X1, X2) → n__take(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
Types:
from :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
cons :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
n__from :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
n__s :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
head :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
2nd :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
activate :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
take :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
0' :: n__s:n__from:cons:0':nil:n__take
nil :: n__s:n__from:cons:0':nil:n__take
s :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
n__take :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
sel :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
hole_n__s:n__from:cons:0':nil:n__take1_0 :: n__s:n__from:cons:0':nil:n__take
gen_n__s:n__from:cons:0':nil:n__take2_0 :: Nat → n__s:n__from:cons:0':nil:n__take
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
activate,
selThey will be analysed ascendingly in the following order:
activate < sel
(8) Obligation:
TRS:
Rules:
from(
X) →
cons(
X,
n__from(
n__s(
X)))
head(
cons(
X,
XS)) →
X2nd(
cons(
X,
XS)) →
head(
activate(
XS))
take(
0',
XS) →
niltake(
s(
N),
cons(
X,
XS)) →
cons(
X,
n__take(
N,
activate(
XS)))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
activate(
XS))
from(
X) →
n__from(
X)
s(
X) →
n__s(
X)
take(
X1,
X2) →
n__take(
X1,
X2)
activate(
n__from(
X)) →
from(
activate(
X))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
n__take(
X1,
X2)) →
take(
activate(
X1),
activate(
X2))
activate(
X) →
XTypes:
from :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
cons :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
n__from :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
n__s :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
head :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
2nd :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
activate :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
take :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
0' :: n__s:n__from:cons:0':nil:n__take
nil :: n__s:n__from:cons:0':nil:n__take
s :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
n__take :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
sel :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
hole_n__s:n__from:cons:0':nil:n__take1_0 :: n__s:n__from:cons:0':nil:n__take
gen_n__s:n__from:cons:0':nil:n__take2_0 :: Nat → n__s:n__from:cons:0':nil:n__take
Generator Equations:
gen_n__s:n__from:cons:0':nil:n__take2_0(0) ⇔ 0'
gen_n__s:n__from:cons:0':nil:n__take2_0(+(x, 1)) ⇔ cons(0', gen_n__s:n__from:cons:0':nil:n__take2_0(x))
The following defined symbols remain to be analysed:
activate, sel
They will be analysed ascendingly in the following order:
activate < sel
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol activate.
(10) Obligation:
TRS:
Rules:
from(
X) →
cons(
X,
n__from(
n__s(
X)))
head(
cons(
X,
XS)) →
X2nd(
cons(
X,
XS)) →
head(
activate(
XS))
take(
0',
XS) →
niltake(
s(
N),
cons(
X,
XS)) →
cons(
X,
n__take(
N,
activate(
XS)))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
activate(
XS))
from(
X) →
n__from(
X)
s(
X) →
n__s(
X)
take(
X1,
X2) →
n__take(
X1,
X2)
activate(
n__from(
X)) →
from(
activate(
X))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
n__take(
X1,
X2)) →
take(
activate(
X1),
activate(
X2))
activate(
X) →
XTypes:
from :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
cons :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
n__from :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
n__s :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
head :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
2nd :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
activate :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
take :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
0' :: n__s:n__from:cons:0':nil:n__take
nil :: n__s:n__from:cons:0':nil:n__take
s :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
n__take :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
sel :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
hole_n__s:n__from:cons:0':nil:n__take1_0 :: n__s:n__from:cons:0':nil:n__take
gen_n__s:n__from:cons:0':nil:n__take2_0 :: Nat → n__s:n__from:cons:0':nil:n__take
Generator Equations:
gen_n__s:n__from:cons:0':nil:n__take2_0(0) ⇔ 0'
gen_n__s:n__from:cons:0':nil:n__take2_0(+(x, 1)) ⇔ cons(0', gen_n__s:n__from:cons:0':nil:n__take2_0(x))
The following defined symbols remain to be analysed:
sel
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol sel.
(12) Obligation:
TRS:
Rules:
from(
X) →
cons(
X,
n__from(
n__s(
X)))
head(
cons(
X,
XS)) →
X2nd(
cons(
X,
XS)) →
head(
activate(
XS))
take(
0',
XS) →
niltake(
s(
N),
cons(
X,
XS)) →
cons(
X,
n__take(
N,
activate(
XS)))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
activate(
XS))
from(
X) →
n__from(
X)
s(
X) →
n__s(
X)
take(
X1,
X2) →
n__take(
X1,
X2)
activate(
n__from(
X)) →
from(
activate(
X))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
n__take(
X1,
X2)) →
take(
activate(
X1),
activate(
X2))
activate(
X) →
XTypes:
from :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
cons :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
n__from :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
n__s :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
head :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
2nd :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
activate :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
take :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
0' :: n__s:n__from:cons:0':nil:n__take
nil :: n__s:n__from:cons:0':nil:n__take
s :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
n__take :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
sel :: n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take → n__s:n__from:cons:0':nil:n__take
hole_n__s:n__from:cons:0':nil:n__take1_0 :: n__s:n__from:cons:0':nil:n__take
gen_n__s:n__from:cons:0':nil:n__take2_0 :: Nat → n__s:n__from:cons:0':nil:n__take
Generator Equations:
gen_n__s:n__from:cons:0':nil:n__take2_0(0) ⇔ 0'
gen_n__s:n__from:cons:0':nil:n__take2_0(+(x, 1)) ⇔ cons(0', gen_n__s:n__from:cons:0':nil:n__take2_0(x))
No more defined symbols left to analyse.