0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 15 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtUsableRulesProof (⇔, 0 ms)
↳8 CdtProblem
↳9 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 68 ms)
↳10 CdtProblem
↳11 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 BOUNDS(1, 1)
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(X) → X
As the TRS does not nest defined symbols, we have rc = irc.
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(X) → X
Tuples:
first(0, z0) → nil
first(s(z0), cons(z1, z2)) → cons(z1, n__first(z0, activate(z2)))
first(z0, z1) → n__first(z0, z1)
from(z0) → cons(z0, n__from(s(z0)))
from(z0) → n__from(z0)
activate(n__first(z0, z1)) → first(z0, z1)
activate(n__from(z0)) → from(z0)
activate(z0) → z0
S tuples:
FIRST(0, z0) → c
FIRST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z2))
FIRST(z0, z1) → c2
FROM(z0) → c3
FROM(z0) → c4
ACTIVATE(n__first(z0, z1)) → c5(FIRST(z0, z1))
ACTIVATE(n__from(z0)) → c6(FROM(z0))
ACTIVATE(z0) → c7
K tuples:none
FIRST(0, z0) → c
FIRST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z2))
FIRST(z0, z1) → c2
FROM(z0) → c3
FROM(z0) → c4
ACTIVATE(n__first(z0, z1)) → c5(FIRST(z0, z1))
ACTIVATE(n__from(z0)) → c6(FROM(z0))
ACTIVATE(z0) → c7
first, from, activate
FIRST, FROM, ACTIVATE
c, c1, c2, c3, c4, c5, c6, c7
ACTIVATE(n__from(z0)) → c6(FROM(z0))
FIRST(0, z0) → c
FROM(z0) → c4
FROM(z0) → c3
ACTIVATE(z0) → c7
FIRST(z0, z1) → c2
Tuples:
first(0, z0) → nil
first(s(z0), cons(z1, z2)) → cons(z1, n__first(z0, activate(z2)))
first(z0, z1) → n__first(z0, z1)
from(z0) → cons(z0, n__from(s(z0)))
from(z0) → n__from(z0)
activate(n__first(z0, z1)) → first(z0, z1)
activate(n__from(z0)) → from(z0)
activate(z0) → z0
S tuples:
FIRST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z2))
ACTIVATE(n__first(z0, z1)) → c5(FIRST(z0, z1))
K tuples:none
FIRST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z2))
ACTIVATE(n__first(z0, z1)) → c5(FIRST(z0, z1))
first, from, activate
FIRST, ACTIVATE
c1, c5
first(0, z0) → nil
first(s(z0), cons(z1, z2)) → cons(z1, n__first(z0, activate(z2)))
first(z0, z1) → n__first(z0, z1)
from(z0) → cons(z0, n__from(s(z0)))
from(z0) → n__from(z0)
activate(n__first(z0, z1)) → first(z0, z1)
activate(n__from(z0)) → from(z0)
activate(z0) → z0
S tuples:
FIRST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z2))
ACTIVATE(n__first(z0, z1)) → c5(FIRST(z0, z1))
K tuples:none
FIRST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z2))
ACTIVATE(n__first(z0, z1)) → c5(FIRST(z0, z1))
FIRST, ACTIVATE
c1, c5
We considered the (Usable) Rules:none
FIRST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z2))
ACTIVATE(n__first(z0, z1)) → c5(FIRST(z0, z1))
The order we found is given by the following interpretation:
FIRST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z2))
ACTIVATE(n__first(z0, z1)) → c5(FIRST(z0, z1))
POL(ACTIVATE(x1)) = x1
POL(FIRST(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c5(x1)) = x1
POL(cons(x1, x2)) = x2
POL(n__first(x1, x2)) = [1] + x1 + x2
POL(s(x1)) = [1]
S tuples:none
FIRST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z2))
ACTIVATE(n__first(z0, z1)) → c5(FIRST(z0, z1))
Defined Rule Symbols:none
FIRST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z2))
ACTIVATE(n__first(z0, z1)) → c5(FIRST(z0, z1))
FIRST, ACTIVATE
c1, c5