(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__f(X) → a__if(mark(X), c, f(true))
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(f(X)) → a__f(mark(X))
mark(if(X1, X2, X3)) → a__if(mark(X1), mark(X2), X3)
mark(c) → c
mark(true) → true
mark(false) → false
a__f(X) → f(X)
a__if(X1, X2, X3) → if(X1, X2, X3)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
a__if(false, X, if(false, X23713_0, X33714_0)) →+ a__if(false, mark(X23713_0), X33714_0)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [X33714_0 / if(false, X23713_0, X33714_0)].
The result substitution is [X / mark(X23713_0)].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a__f(X) → a__if(mark(X), c, f(true))
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(f(X)) → a__f(mark(X))
mark(if(X1, X2, X3)) → a__if(mark(X1), mark(X2), X3)
mark(c) → c
mark(true) → true
mark(false) → false
a__f(X) → f(X)
a__if(X1, X2, X3) → if(X1, X2, X3)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
a__f(X) → a__if(mark(X), c, f(true))
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(f(X)) → a__f(mark(X))
mark(if(X1, X2, X3)) → a__if(mark(X1), mark(X2), X3)
mark(c) → c
mark(true) → true
mark(false) → false
a__f(X) → f(X)
a__if(X1, X2, X3) → if(X1, X2, X3)
Types:
a__f :: c:true:f:false:if → c:true:f:false:if
a__if :: c:true:f:false:if → c:true:f:false:if → c:true:f:false:if → c:true:f:false:if
mark :: c:true:f:false:if → c:true:f:false:if
c :: c:true:f:false:if
f :: c:true:f:false:if → c:true:f:false:if
true :: c:true:f:false:if
false :: c:true:f:false:if
if :: c:true:f:false:if → c:true:f:false:if → c:true:f:false:if → c:true:f:false:if
hole_c:true:f:false:if1_0 :: c:true:f:false:if
gen_c:true:f:false:if2_0 :: Nat → c:true:f:false:if
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
a__f,
a__if,
markThey will be analysed ascendingly in the following order:
a__f = a__if
a__f = mark
a__if = mark
(8) Obligation:
TRS:
Rules:
a__f(
X) →
a__if(
mark(
X),
c,
f(
true))
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
mark(
f(
X)) →
a__f(
mark(
X))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
mark(
X2),
X3)
mark(
c) →
cmark(
true) →
truemark(
false) →
falsea__f(
X) →
f(
X)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
Types:
a__f :: c:true:f:false:if → c:true:f:false:if
a__if :: c:true:f:false:if → c:true:f:false:if → c:true:f:false:if → c:true:f:false:if
mark :: c:true:f:false:if → c:true:f:false:if
c :: c:true:f:false:if
f :: c:true:f:false:if → c:true:f:false:if
true :: c:true:f:false:if
false :: c:true:f:false:if
if :: c:true:f:false:if → c:true:f:false:if → c:true:f:false:if → c:true:f:false:if
hole_c:true:f:false:if1_0 :: c:true:f:false:if
gen_c:true:f:false:if2_0 :: Nat → c:true:f:false:if
Generator Equations:
gen_c:true:f:false:if2_0(0) ⇔ c
gen_c:true:f:false:if2_0(+(x, 1)) ⇔ f(gen_c:true:f:false:if2_0(x))
The following defined symbols remain to be analysed:
a__if, a__f, mark
They will be analysed ascendingly in the following order:
a__f = a__if
a__f = mark
a__if = mark
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__if.
(10) Obligation:
TRS:
Rules:
a__f(
X) →
a__if(
mark(
X),
c,
f(
true))
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
mark(
f(
X)) →
a__f(
mark(
X))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
mark(
X2),
X3)
mark(
c) →
cmark(
true) →
truemark(
false) →
falsea__f(
X) →
f(
X)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
Types:
a__f :: c:true:f:false:if → c:true:f:false:if
a__if :: c:true:f:false:if → c:true:f:false:if → c:true:f:false:if → c:true:f:false:if
mark :: c:true:f:false:if → c:true:f:false:if
c :: c:true:f:false:if
f :: c:true:f:false:if → c:true:f:false:if
true :: c:true:f:false:if
false :: c:true:f:false:if
if :: c:true:f:false:if → c:true:f:false:if → c:true:f:false:if → c:true:f:false:if
hole_c:true:f:false:if1_0 :: c:true:f:false:if
gen_c:true:f:false:if2_0 :: Nat → c:true:f:false:if
Generator Equations:
gen_c:true:f:false:if2_0(0) ⇔ c
gen_c:true:f:false:if2_0(+(x, 1)) ⇔ f(gen_c:true:f:false:if2_0(x))
The following defined symbols remain to be analysed:
mark, a__f
They will be analysed ascendingly in the following order:
a__f = a__if
a__f = mark
a__if = mark
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
mark(
gen_c:true:f:false:if2_0(
+(
1,
n26_0))) →
*3_0, rt ∈ Ω(n26
0)
Induction Base:
mark(gen_c:true:f:false:if2_0(+(1, 0)))
Induction Step:
mark(gen_c:true:f:false:if2_0(+(1, +(n26_0, 1)))) →RΩ(1)
a__f(mark(gen_c:true:f:false:if2_0(+(1, n26_0)))) →IH
a__f(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
a__f(
X) →
a__if(
mark(
X),
c,
f(
true))
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
mark(
f(
X)) →
a__f(
mark(
X))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
mark(
X2),
X3)
mark(
c) →
cmark(
true) →
truemark(
false) →
falsea__f(
X) →
f(
X)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
Types:
a__f :: c:true:f:false:if → c:true:f:false:if
a__if :: c:true:f:false:if → c:true:f:false:if → c:true:f:false:if → c:true:f:false:if
mark :: c:true:f:false:if → c:true:f:false:if
c :: c:true:f:false:if
f :: c:true:f:false:if → c:true:f:false:if
true :: c:true:f:false:if
false :: c:true:f:false:if
if :: c:true:f:false:if → c:true:f:false:if → c:true:f:false:if → c:true:f:false:if
hole_c:true:f:false:if1_0 :: c:true:f:false:if
gen_c:true:f:false:if2_0 :: Nat → c:true:f:false:if
Lemmas:
mark(gen_c:true:f:false:if2_0(+(1, n26_0))) → *3_0, rt ∈ Ω(n260)
Generator Equations:
gen_c:true:f:false:if2_0(0) ⇔ c
gen_c:true:f:false:if2_0(+(x, 1)) ⇔ f(gen_c:true:f:false:if2_0(x))
The following defined symbols remain to be analysed:
a__f, a__if
They will be analysed ascendingly in the following order:
a__f = a__if
a__f = mark
a__if = mark
(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__f.
(15) Obligation:
TRS:
Rules:
a__f(
X) →
a__if(
mark(
X),
c,
f(
true))
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
mark(
f(
X)) →
a__f(
mark(
X))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
mark(
X2),
X3)
mark(
c) →
cmark(
true) →
truemark(
false) →
falsea__f(
X) →
f(
X)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
Types:
a__f :: c:true:f:false:if → c:true:f:false:if
a__if :: c:true:f:false:if → c:true:f:false:if → c:true:f:false:if → c:true:f:false:if
mark :: c:true:f:false:if → c:true:f:false:if
c :: c:true:f:false:if
f :: c:true:f:false:if → c:true:f:false:if
true :: c:true:f:false:if
false :: c:true:f:false:if
if :: c:true:f:false:if → c:true:f:false:if → c:true:f:false:if → c:true:f:false:if
hole_c:true:f:false:if1_0 :: c:true:f:false:if
gen_c:true:f:false:if2_0 :: Nat → c:true:f:false:if
Lemmas:
mark(gen_c:true:f:false:if2_0(+(1, n26_0))) → *3_0, rt ∈ Ω(n260)
Generator Equations:
gen_c:true:f:false:if2_0(0) ⇔ c
gen_c:true:f:false:if2_0(+(x, 1)) ⇔ f(gen_c:true:f:false:if2_0(x))
The following defined symbols remain to be analysed:
a__if
They will be analysed ascendingly in the following order:
a__f = a__if
a__f = mark
a__if = mark
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__if.
(17) Obligation:
TRS:
Rules:
a__f(
X) →
a__if(
mark(
X),
c,
f(
true))
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
mark(
f(
X)) →
a__f(
mark(
X))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
mark(
X2),
X3)
mark(
c) →
cmark(
true) →
truemark(
false) →
falsea__f(
X) →
f(
X)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
Types:
a__f :: c:true:f:false:if → c:true:f:false:if
a__if :: c:true:f:false:if → c:true:f:false:if → c:true:f:false:if → c:true:f:false:if
mark :: c:true:f:false:if → c:true:f:false:if
c :: c:true:f:false:if
f :: c:true:f:false:if → c:true:f:false:if
true :: c:true:f:false:if
false :: c:true:f:false:if
if :: c:true:f:false:if → c:true:f:false:if → c:true:f:false:if → c:true:f:false:if
hole_c:true:f:false:if1_0 :: c:true:f:false:if
gen_c:true:f:false:if2_0 :: Nat → c:true:f:false:if
Lemmas:
mark(gen_c:true:f:false:if2_0(+(1, n26_0))) → *3_0, rt ∈ Ω(n260)
Generator Equations:
gen_c:true:f:false:if2_0(0) ⇔ c
gen_c:true:f:false:if2_0(+(x, 1)) ⇔ f(gen_c:true:f:false:if2_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_c:true:f:false:if2_0(+(1, n26_0))) → *3_0, rt ∈ Ω(n260)
(19) BOUNDS(n^1, INF)
(20) Obligation:
TRS:
Rules:
a__f(
X) →
a__if(
mark(
X),
c,
f(
true))
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
mark(
f(
X)) →
a__f(
mark(
X))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
mark(
X2),
X3)
mark(
c) →
cmark(
true) →
truemark(
false) →
falsea__f(
X) →
f(
X)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
Types:
a__f :: c:true:f:false:if → c:true:f:false:if
a__if :: c:true:f:false:if → c:true:f:false:if → c:true:f:false:if → c:true:f:false:if
mark :: c:true:f:false:if → c:true:f:false:if
c :: c:true:f:false:if
f :: c:true:f:false:if → c:true:f:false:if
true :: c:true:f:false:if
false :: c:true:f:false:if
if :: c:true:f:false:if → c:true:f:false:if → c:true:f:false:if → c:true:f:false:if
hole_c:true:f:false:if1_0 :: c:true:f:false:if
gen_c:true:f:false:if2_0 :: Nat → c:true:f:false:if
Lemmas:
mark(gen_c:true:f:false:if2_0(+(1, n26_0))) → *3_0, rt ∈ Ω(n260)
Generator Equations:
gen_c:true:f:false:if2_0(0) ⇔ c
gen_c:true:f:false:if2_0(+(x, 1)) ⇔ f(gen_c:true:f:false:if2_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_c:true:f:false:if2_0(+(1, n26_0))) → *3_0, rt ∈ Ω(n260)
(22) BOUNDS(n^1, INF)