(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
g(s(X)) →+ s(s(g(X)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [X / s(X)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(X) → cons(X, n__f(g(X)))
g(0') → s(0')
g(s(X)) → s(s(g(X)))
sel(0', cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(X) → cons(X, n__f(g(X)))
g(0') → s(0')
g(s(X)) → s(s(g(X)))
sel(0', cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
Types:
f :: 0':s → n__f:cons
cons :: 0':s → n__f:cons → n__f:cons
n__f :: 0':s → n__f:cons
g :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
sel :: 0':s → n__f:cons → 0':s
activate :: n__f:cons → n__f:cons
hole_n__f:cons1_0 :: n__f:cons
hole_0':s2_0 :: 0':s
gen_n__f:cons3_0 :: Nat → n__f:cons
gen_0':s4_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
g, sel
(8) Obligation:
TRS:
Rules:
f(
X) →
cons(
X,
n__f(
g(
X)))
g(
0') →
s(
0')
g(
s(
X)) →
s(
s(
g(
X)))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
activate(
Z))
f(
X) →
n__f(
X)
activate(
n__f(
X)) →
f(
X)
activate(
X) →
XTypes:
f :: 0':s → n__f:cons
cons :: 0':s → n__f:cons → n__f:cons
n__f :: 0':s → n__f:cons
g :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
sel :: 0':s → n__f:cons → 0':s
activate :: n__f:cons → n__f:cons
hole_n__f:cons1_0 :: n__f:cons
hole_0':s2_0 :: 0':s
gen_n__f:cons3_0 :: Nat → n__f:cons
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_n__f:cons3_0(0) ⇔ n__f(0')
gen_n__f:cons3_0(+(x, 1)) ⇔ cons(0', gen_n__f:cons3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
g, sel
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
g(
gen_0':s4_0(
n6_0)) →
gen_0':s4_0(
+(
1,
*(
2,
n6_0))), rt ∈ Ω(1 + n6
0)
Induction Base:
g(gen_0':s4_0(0)) →RΩ(1)
s(0')
Induction Step:
g(gen_0':s4_0(+(n6_0, 1))) →RΩ(1)
s(s(g(gen_0':s4_0(n6_0)))) →IH
s(s(gen_0':s4_0(+(1, *(2, c7_0)))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
X) →
cons(
X,
n__f(
g(
X)))
g(
0') →
s(
0')
g(
s(
X)) →
s(
s(
g(
X)))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
activate(
Z))
f(
X) →
n__f(
X)
activate(
n__f(
X)) →
f(
X)
activate(
X) →
XTypes:
f :: 0':s → n__f:cons
cons :: 0':s → n__f:cons → n__f:cons
n__f :: 0':s → n__f:cons
g :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
sel :: 0':s → n__f:cons → 0':s
activate :: n__f:cons → n__f:cons
hole_n__f:cons1_0 :: n__f:cons
hole_0':s2_0 :: 0':s
gen_n__f:cons3_0 :: Nat → n__f:cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
g(gen_0':s4_0(n6_0)) → gen_0':s4_0(+(1, *(2, n6_0))), rt ∈ Ω(1 + n60)
Generator Equations:
gen_n__f:cons3_0(0) ⇔ n__f(0')
gen_n__f:cons3_0(+(x, 1)) ⇔ cons(0', gen_n__f:cons3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
sel
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol sel.
(13) Obligation:
TRS:
Rules:
f(
X) →
cons(
X,
n__f(
g(
X)))
g(
0') →
s(
0')
g(
s(
X)) →
s(
s(
g(
X)))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
activate(
Z))
f(
X) →
n__f(
X)
activate(
n__f(
X)) →
f(
X)
activate(
X) →
XTypes:
f :: 0':s → n__f:cons
cons :: 0':s → n__f:cons → n__f:cons
n__f :: 0':s → n__f:cons
g :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
sel :: 0':s → n__f:cons → 0':s
activate :: n__f:cons → n__f:cons
hole_n__f:cons1_0 :: n__f:cons
hole_0':s2_0 :: 0':s
gen_n__f:cons3_0 :: Nat → n__f:cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
g(gen_0':s4_0(n6_0)) → gen_0':s4_0(+(1, *(2, n6_0))), rt ∈ Ω(1 + n60)
Generator Equations:
gen_n__f:cons3_0(0) ⇔ n__f(0')
gen_n__f:cons3_0(+(x, 1)) ⇔ cons(0', gen_n__f:cons3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_0':s4_0(n6_0)) → gen_0':s4_0(+(1, *(2, n6_0))), rt ∈ Ω(1 + n60)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
f(
X) →
cons(
X,
n__f(
g(
X)))
g(
0') →
s(
0')
g(
s(
X)) →
s(
s(
g(
X)))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
activate(
Z))
f(
X) →
n__f(
X)
activate(
n__f(
X)) →
f(
X)
activate(
X) →
XTypes:
f :: 0':s → n__f:cons
cons :: 0':s → n__f:cons → n__f:cons
n__f :: 0':s → n__f:cons
g :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
sel :: 0':s → n__f:cons → 0':s
activate :: n__f:cons → n__f:cons
hole_n__f:cons1_0 :: n__f:cons
hole_0':s2_0 :: 0':s
gen_n__f:cons3_0 :: Nat → n__f:cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
g(gen_0':s4_0(n6_0)) → gen_0':s4_0(+(1, *(2, n6_0))), rt ∈ Ω(1 + n60)
Generator Equations:
gen_n__f:cons3_0(0) ⇔ n__f(0')
gen_n__f:cons3_0(+(x, 1)) ⇔ cons(0', gen_n__f:cons3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_0':s4_0(n6_0)) → gen_0':s4_0(+(1, *(2, n6_0))), rt ∈ Ω(1 + n60)
(18) BOUNDS(n^1, INF)