```* Step 1: Bounds WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
a__tail(X) -> tail(X)
a__tail(cons(X,XS)) -> mark(XS)
a__zeros() -> cons(0(),zeros())
a__zeros() -> zeros()
mark(0()) -> 0()
mark(cons(X1,X2)) -> cons(mark(X1),X2)
mark(tail(X)) -> a__tail(mark(X))
mark(zeros()) -> a__zeros()
- Signature:
{a__tail/1,a__zeros/0,mark/1} / {0/0,cons/2,tail/1,zeros/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {a__tail,a__zeros,mark} and constructors {0,cons,tail
,zeros}
+ Applied Processor:
Bounds {initialAutomaton = minimal, enrichment = match}
+ Details:
The problem is match-bounded by 4.
The enriched problem is compatible with follwoing automaton.
0_0() -> 2
0_1() -> 1
0_1() -> 3
0_2() -> 5
0_3() -> 7
0_4() -> 9
a__tail_0(2) -> 1
a__tail_1(1) -> 1
a__zeros_0() -> 1
a__zeros_1() -> 1
a__zeros_2() -> 1
a__zeros_3() -> 1
cons_0(2,2) -> 2
cons_1(1,2) -> 1
cons_1(3,4) -> 1
cons_2(5,6) -> 1
cons_3(7,8) -> 1
cons_4(9,10) -> 1
mark_0(2) -> 1
mark_1(2) -> 1
mark_2(2) -> 1
mark_2(4) -> 1
mark_2(6) -> 1
mark_2(8) -> 1
mark_2(10) -> 1
tail_0(2) -> 2
tail_1(2) -> 1
tail_2(1) -> 1
zeros_0() -> 2
zeros_1() -> 1
zeros_1() -> 4
zeros_2() -> 1
zeros_2() -> 6
zeros_3() -> 1
zeros_3() -> 8
zeros_4() -> 1
zeros_4() -> 10
* Step 2: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
a__tail(X) -> tail(X)
a__tail(cons(X,XS)) -> mark(XS)
a__zeros() -> cons(0(),zeros())
a__zeros() -> zeros()
mark(0()) -> 0()
mark(cons(X1,X2)) -> cons(mark(X1),X2)
mark(tail(X)) -> a__tail(mark(X))
mark(zeros()) -> a__zeros()
- Signature:
{a__tail/1,a__zeros/0,mark/1} / {0/0,cons/2,tail/1,zeros/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {a__tail,a__zeros,mark} and constructors {0,cons,tail
,zeros}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))
```