### (0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)

Rewrite Strategy: FULL

### (1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
mark(from(X)) →+ cons(mark(mark(X)), from(s(mark(X))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [X / from(X)].
The result substitution is [ ].

The rewrite sequence
mark(from(X)) →+ cons(mark(mark(X)), from(s(mark(X))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0].
The pumping substitution is [X / from(X)].
The result substitution is [ ].

### (3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

### (4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__after(0', XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0') → 0'
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)

S is empty.
Rewrite Strategy: FULL

Infered types.

### (6) Obligation:

TRS:
Rules:
a__from(X) → cons(mark(X), from(s(X)))
a__after(0', XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0') → 0'
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)

Types:
a__from :: s:from:cons:0':after → s:from:cons:0':after
cons :: s:from:cons:0':after → s:from:cons:0':after → s:from:cons:0':after
mark :: s:from:cons:0':after → s:from:cons:0':after
from :: s:from:cons:0':after → s:from:cons:0':after
s :: s:from:cons:0':after → s:from:cons:0':after
a__after :: s:from:cons:0':after → s:from:cons:0':after → s:from:cons:0':after
0' :: s:from:cons:0':after
after :: s:from:cons:0':after → s:from:cons:0':after → s:from:cons:0':after
hole_s:from:cons:0':after1_0 :: s:from:cons:0':after
gen_s:from:cons:0':after2_0 :: Nat → s:from:cons:0':after

### (7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
a__from, mark, a__after

They will be analysed ascendingly in the following order:
a__from = mark
a__from = a__after
mark = a__after

### (8) Obligation:

TRS:
Rules:
a__from(X) → cons(mark(X), from(s(X)))
a__after(0', XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0') → 0'
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)

Types:
a__from :: s:from:cons:0':after → s:from:cons:0':after
cons :: s:from:cons:0':after → s:from:cons:0':after → s:from:cons:0':after
mark :: s:from:cons:0':after → s:from:cons:0':after
from :: s:from:cons:0':after → s:from:cons:0':after
s :: s:from:cons:0':after → s:from:cons:0':after
a__after :: s:from:cons:0':after → s:from:cons:0':after → s:from:cons:0':after
0' :: s:from:cons:0':after
after :: s:from:cons:0':after → s:from:cons:0':after → s:from:cons:0':after
hole_s:from:cons:0':after1_0 :: s:from:cons:0':after
gen_s:from:cons:0':after2_0 :: Nat → s:from:cons:0':after

Generator Equations:
gen_s:from:cons:0':after2_0(0) ⇔ 0'
gen_s:from:cons:0':after2_0(+(x, 1)) ⇔ cons(0', gen_s:from:cons:0':after2_0(x))

The following defined symbols remain to be analysed:
mark, a__from, a__after

They will be analysed ascendingly in the following order:
a__from = mark
a__from = a__after
mark = a__after

### (9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol mark.

### (10) Obligation:

TRS:
Rules:
a__from(X) → cons(mark(X), from(s(X)))
a__after(0', XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0') → 0'
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)

Types:
a__from :: s:from:cons:0':after → s:from:cons:0':after
cons :: s:from:cons:0':after → s:from:cons:0':after → s:from:cons:0':after
mark :: s:from:cons:0':after → s:from:cons:0':after
from :: s:from:cons:0':after → s:from:cons:0':after
s :: s:from:cons:0':after → s:from:cons:0':after
a__after :: s:from:cons:0':after → s:from:cons:0':after → s:from:cons:0':after
0' :: s:from:cons:0':after
after :: s:from:cons:0':after → s:from:cons:0':after → s:from:cons:0':after
hole_s:from:cons:0':after1_0 :: s:from:cons:0':after
gen_s:from:cons:0':after2_0 :: Nat → s:from:cons:0':after

Generator Equations:
gen_s:from:cons:0':after2_0(0) ⇔ 0'
gen_s:from:cons:0':after2_0(+(x, 1)) ⇔ cons(0', gen_s:from:cons:0':after2_0(x))

The following defined symbols remain to be analysed:
a__from, a__after

They will be analysed ascendingly in the following order:
a__from = mark
a__from = a__after
mark = a__after

### (11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol a__from.

### (12) Obligation:

TRS:
Rules:
a__from(X) → cons(mark(X), from(s(X)))
a__after(0', XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0') → 0'
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)

Types:
a__from :: s:from:cons:0':after → s:from:cons:0':after
cons :: s:from:cons:0':after → s:from:cons:0':after → s:from:cons:0':after
mark :: s:from:cons:0':after → s:from:cons:0':after
from :: s:from:cons:0':after → s:from:cons:0':after
s :: s:from:cons:0':after → s:from:cons:0':after
a__after :: s:from:cons:0':after → s:from:cons:0':after → s:from:cons:0':after
0' :: s:from:cons:0':after
after :: s:from:cons:0':after → s:from:cons:0':after → s:from:cons:0':after
hole_s:from:cons:0':after1_0 :: s:from:cons:0':after
gen_s:from:cons:0':after2_0 :: Nat → s:from:cons:0':after

Generator Equations:
gen_s:from:cons:0':after2_0(0) ⇔ 0'
gen_s:from:cons:0':after2_0(+(x, 1)) ⇔ cons(0', gen_s:from:cons:0':after2_0(x))

The following defined symbols remain to be analysed:
a__after

They will be analysed ascendingly in the following order:
a__from = mark
a__from = a__after
mark = a__after

### (13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol a__after.

### (14) Obligation:

TRS:
Rules:
a__from(X) → cons(mark(X), from(s(X)))
a__after(0', XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0') → 0'
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)

Types:
a__from :: s:from:cons:0':after → s:from:cons:0':after
cons :: s:from:cons:0':after → s:from:cons:0':after → s:from:cons:0':after
mark :: s:from:cons:0':after → s:from:cons:0':after
from :: s:from:cons:0':after → s:from:cons:0':after
s :: s:from:cons:0':after → s:from:cons:0':after
a__after :: s:from:cons:0':after → s:from:cons:0':after → s:from:cons:0':after
0' :: s:from:cons:0':after
after :: s:from:cons:0':after → s:from:cons:0':after → s:from:cons:0':after
hole_s:from:cons:0':after1_0 :: s:from:cons:0':after
gen_s:from:cons:0':after2_0 :: Nat → s:from:cons:0':after

Generator Equations:
gen_s:from:cons:0':after2_0(0) ⇔ 0'
gen_s:from:cons:0':after2_0(+(x, 1)) ⇔ cons(0', gen_s:from:cons:0':after2_0(x))

No more defined symbols left to analyse.