### (0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X

Rewrite Strategy: FULL

### (1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
activate(n__from(X)) →+ cons(activate(X), n__from(n__s(activate(X))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / n__from(X)].
The result substitution is [ ].

The rewrite sequence
activate(n__from(X)) →+ cons(activate(X), n__from(n__s(activate(X))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0].
The pumping substitution is [X / n__from(X)].
The result substitution is [ ].

### (3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

### (4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
sel(0', cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0') → 0'
minus(s(X), s(Y)) → minus(X, Y)
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X

S is empty.
Rewrite Strategy: FULL

Infered types.

### (6) Obligation:

TRS:
Rules:
from(X) → cons(X, n__from(n__s(X)))
sel(0', cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0') → 0'
minus(s(X), s(Y)) → minus(X, Y)
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X

Types:
from :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
cons :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
n__from :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
n__s :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
sel :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
0' :: n__s:n__from:cons:0':nil:n__zWquot
s :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
activate :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
minus :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
quot :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
zWquot :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
nil :: n__s:n__from:cons:0':nil:n__zWquot
n__zWquot :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
hole_n__s:n__from:cons:0':nil:n__zWquot1_0 :: n__s:n__from:cons:0':nil:n__zWquot
gen_n__s:n__from:cons:0':nil:n__zWquot2_0 :: Nat → n__s:n__from:cons:0':nil:n__zWquot

### (7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
sel, activate, minus, quot

They will be analysed ascendingly in the following order:
activate < sel
quot < activate
minus < quot

### (8) Obligation:

TRS:
Rules:
from(X) → cons(X, n__from(n__s(X)))
sel(0', cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0') → 0'
minus(s(X), s(Y)) → minus(X, Y)
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X

Types:
from :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
cons :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
n__from :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
n__s :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
sel :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
0' :: n__s:n__from:cons:0':nil:n__zWquot
s :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
activate :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
minus :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
quot :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
zWquot :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
nil :: n__s:n__from:cons:0':nil:n__zWquot
n__zWquot :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
hole_n__s:n__from:cons:0':nil:n__zWquot1_0 :: n__s:n__from:cons:0':nil:n__zWquot
gen_n__s:n__from:cons:0':nil:n__zWquot2_0 :: Nat → n__s:n__from:cons:0':nil:n__zWquot

Generator Equations:
gen_n__s:n__from:cons:0':nil:n__zWquot2_0(0) ⇔ 0'
gen_n__s:n__from:cons:0':nil:n__zWquot2_0(+(x, 1)) ⇔ cons(0', gen_n__s:n__from:cons:0':nil:n__zWquot2_0(x))

The following defined symbols remain to be analysed:
minus, sel, activate, quot

They will be analysed ascendingly in the following order:
activate < sel
quot < activate
minus < quot

### (9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol minus.

### (10) Obligation:

TRS:
Rules:
from(X) → cons(X, n__from(n__s(X)))
sel(0', cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0') → 0'
minus(s(X), s(Y)) → minus(X, Y)
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X

Types:
from :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
cons :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
n__from :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
n__s :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
sel :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
0' :: n__s:n__from:cons:0':nil:n__zWquot
s :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
activate :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
minus :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
quot :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
zWquot :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
nil :: n__s:n__from:cons:0':nil:n__zWquot
n__zWquot :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
hole_n__s:n__from:cons:0':nil:n__zWquot1_0 :: n__s:n__from:cons:0':nil:n__zWquot
gen_n__s:n__from:cons:0':nil:n__zWquot2_0 :: Nat → n__s:n__from:cons:0':nil:n__zWquot

Generator Equations:
gen_n__s:n__from:cons:0':nil:n__zWquot2_0(0) ⇔ 0'
gen_n__s:n__from:cons:0':nil:n__zWquot2_0(+(x, 1)) ⇔ cons(0', gen_n__s:n__from:cons:0':nil:n__zWquot2_0(x))

The following defined symbols remain to be analysed:
quot, sel, activate

They will be analysed ascendingly in the following order:
activate < sel
quot < activate

### (11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol quot.

### (12) Obligation:

TRS:
Rules:
from(X) → cons(X, n__from(n__s(X)))
sel(0', cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0') → 0'
minus(s(X), s(Y)) → minus(X, Y)
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X

Types:
from :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
cons :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
n__from :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
n__s :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
sel :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
0' :: n__s:n__from:cons:0':nil:n__zWquot
s :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
activate :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
minus :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
quot :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
zWquot :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
nil :: n__s:n__from:cons:0':nil:n__zWquot
n__zWquot :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
hole_n__s:n__from:cons:0':nil:n__zWquot1_0 :: n__s:n__from:cons:0':nil:n__zWquot
gen_n__s:n__from:cons:0':nil:n__zWquot2_0 :: Nat → n__s:n__from:cons:0':nil:n__zWquot

Generator Equations:
gen_n__s:n__from:cons:0':nil:n__zWquot2_0(0) ⇔ 0'
gen_n__s:n__from:cons:0':nil:n__zWquot2_0(+(x, 1)) ⇔ cons(0', gen_n__s:n__from:cons:0':nil:n__zWquot2_0(x))

The following defined symbols remain to be analysed:
activate, sel

They will be analysed ascendingly in the following order:
activate < sel

### (13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol activate.

### (14) Obligation:

TRS:
Rules:
from(X) → cons(X, n__from(n__s(X)))
sel(0', cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0') → 0'
minus(s(X), s(Y)) → minus(X, Y)
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X

Types:
from :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
cons :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
n__from :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
n__s :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
sel :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
0' :: n__s:n__from:cons:0':nil:n__zWquot
s :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
activate :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
minus :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
quot :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
zWquot :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
nil :: n__s:n__from:cons:0':nil:n__zWquot
n__zWquot :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
hole_n__s:n__from:cons:0':nil:n__zWquot1_0 :: n__s:n__from:cons:0':nil:n__zWquot
gen_n__s:n__from:cons:0':nil:n__zWquot2_0 :: Nat → n__s:n__from:cons:0':nil:n__zWquot

Generator Equations:
gen_n__s:n__from:cons:0':nil:n__zWquot2_0(0) ⇔ 0'
gen_n__s:n__from:cons:0':nil:n__zWquot2_0(+(x, 1)) ⇔ cons(0', gen_n__s:n__from:cons:0':nil:n__zWquot2_0(x))

The following defined symbols remain to be analysed:
sel

### (15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol sel.

### (16) Obligation:

TRS:
Rules:
from(X) → cons(X, n__from(n__s(X)))
sel(0', cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0') → 0'
minus(s(X), s(Y)) → minus(X, Y)
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X

Types:
from :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
cons :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
n__from :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
n__s :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
sel :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
0' :: n__s:n__from:cons:0':nil:n__zWquot
s :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
activate :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
minus :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
quot :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
zWquot :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
nil :: n__s:n__from:cons:0':nil:n__zWquot
n__zWquot :: n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot → n__s:n__from:cons:0':nil:n__zWquot
hole_n__s:n__from:cons:0':nil:n__zWquot1_0 :: n__s:n__from:cons:0':nil:n__zWquot
gen_n__s:n__from:cons:0':nil:n__zWquot2_0 :: Nat → n__s:n__from:cons:0':nil:n__zWquot

Generator Equations:
gen_n__s:n__from:cons:0':nil:n__zWquot2_0(0) ⇔ 0'
gen_n__s:n__from:cons:0':nil:n__zWquot2_0(+(x, 1)) ⇔ cons(0', gen_n__s:n__from:cons:0':nil:n__zWquot2_0(x))

No more defined symbols left to analyse.