(0) Obligation:

The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1).

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(minus(X1, X2)) → minus(active(X1), X2)
active(minus(X1, X2)) → minus(X1, active(X2))
active(quot(X1, X2)) → quot(active(X1), X2)
active(quot(X1, X2)) → quot(X1, active(X2))
active(zWquot(X1, X2)) → zWquot(active(X1), X2)
active(zWquot(X1, X2)) → zWquot(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
minus(mark(X1), X2) → mark(minus(X1, X2))
minus(X1, mark(X2)) → mark(minus(X1, X2))
quot(mark(X1), X2) → mark(quot(X1, X2))
quot(X1, mark(X2)) → mark(quot(X1, X2))
zWquot(mark(X1), X2) → mark(zWquot(X1, X2))
zWquot(X1, mark(X2)) → mark(zWquot(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(minus(X1, X2)) → minus(proper(X1), proper(X2))
proper(quot(X1, X2)) → quot(proper(X1), proper(X2))
proper(zWquot(X1, X2)) → zWquot(proper(X1), proper(X2))
proper(nil) → ok(nil)
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
minus(ok(X1), ok(X2)) → ok(minus(X1, X2))
quot(ok(X1), ok(X2)) → ok(quot(X1, X2))
zWquot(ok(X1), ok(X2)) → ok(zWquot(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: FULL

(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)

The following defined symbols can occur below the 0th argument of top: proper, active
The following defined symbols can occur below the 0th argument of proper: proper, active
The following defined symbols can occur below the 0th argument of active: proper, active

Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(minus(X, 0)) → mark(0)
active(minus(s(X), s(Y))) → mark(minus(X, Y))
active(quot(0, s(Y))) → mark(0)
active(quot(s(X), s(Y))) → mark(s(quot(minus(X, Y), s(Y))))
active(zWquot(XS, nil)) → mark(nil)
active(zWquot(nil, XS)) → mark(nil)
active(zWquot(cons(X, XS), cons(Y, YS))) → mark(cons(quot(X, Y), zWquot(XS, YS)))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(minus(X1, X2)) → minus(active(X1), X2)
active(minus(X1, X2)) → minus(X1, active(X2))
active(quot(X1, X2)) → quot(active(X1), X2)
active(quot(X1, X2)) → quot(X1, active(X2))
active(zWquot(X1, X2)) → zWquot(active(X1), X2)
active(zWquot(X1, X2)) → zWquot(X1, active(X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(minus(X1, X2)) → minus(proper(X1), proper(X2))
proper(quot(X1, X2)) → quot(proper(X1), proper(X2))
proper(zWquot(X1, X2)) → zWquot(proper(X1), proper(X2))

(2) Obligation:

The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1).

The TRS R consists of the following rules:

top(ok(X)) → top(active(X))
proper(nil) → ok(nil)
from(ok(X)) → ok(from(X))
from(mark(X)) → mark(from(X))
quot(mark(X1), X2) → mark(quot(X1, X2))
zWquot(ok(X1), ok(X2)) → ok(zWquot(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
minus(ok(X1), ok(X2)) → ok(minus(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
zWquot(X1, mark(X2)) → mark(zWquot(X1, X2))
minus(mark(X1), X2) → mark(minus(X1, X2))
zWquot(mark(X1), X2) → mark(zWquot(X1, X2))
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
quot(X1, mark(X2)) → mark(quot(X1, X2))
proper(0) → ok(0)
quot(ok(X1), ok(X2)) → ok(quot(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
top(mark(X)) → top(proper(X))
minus(X1, mark(X2)) → mark(minus(X1, X2))

Rewrite Strategy: FULL

(3) RcToIrcProof (BOTH BOUNDS(ID, ID) transformation)

Converted rc-obligation to irc-obligation.

As the TRS is a non-duplicating overlay system, we have rc = irc.

(4) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).

The TRS R consists of the following rules:

top(ok(X)) → top(active(X))
proper(nil) → ok(nil)
from(ok(X)) → ok(from(X))
from(mark(X)) → mark(from(X))
quot(mark(X1), X2) → mark(quot(X1, X2))
zWquot(ok(X1), ok(X2)) → ok(zWquot(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
minus(ok(X1), ok(X2)) → ok(minus(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
zWquot(X1, mark(X2)) → mark(zWquot(X1, X2))
minus(mark(X1), X2) → mark(minus(X1, X2))
zWquot(mark(X1), X2) → mark(zWquot(X1, X2))
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
quot(X1, mark(X2)) → mark(quot(X1, X2))
proper(0) → ok(0)
quot(ok(X1), ok(X2)) → ok(quot(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
top(mark(X)) → top(proper(X))
minus(X1, mark(X2)) → mark(minus(X1, X2))

Rewrite Strategy: INNERMOST

(5) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)

A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2.

The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3, 4, 5, 6, 7, 8, 9]
transitions:
ok0(0) → 0
active0(0) → 0
nil0() → 0
mark0(0) → 0
00() → 0
top0(0) → 1
proper0(0) → 2
from0(0) → 3
quot0(0, 0) → 4
zWquot0(0, 0) → 5
cons0(0, 0) → 6
minus0(0, 0) → 7
sel0(0, 0) → 8
s0(0) → 9
active1(0) → 10
top1(10) → 1
nil1() → 11
ok1(11) → 2
from1(0) → 12
ok1(12) → 3
from1(0) → 13
mark1(13) → 3
quot1(0, 0) → 14
mark1(14) → 4
zWquot1(0, 0) → 15
ok1(15) → 5
cons1(0, 0) → 16
ok1(16) → 6
minus1(0, 0) → 17
ok1(17) → 7
sel1(0, 0) → 18
mark1(18) → 8
zWquot1(0, 0) → 19
mark1(19) → 5
minus1(0, 0) → 20
mark1(20) → 7
s1(0) → 21
ok1(21) → 9
s1(0) → 22
mark1(22) → 9
01() → 23
ok1(23) → 2
quot1(0, 0) → 24
ok1(24) → 4
sel1(0, 0) → 25
ok1(25) → 8
cons1(0, 0) → 26
mark1(26) → 6
proper1(0) → 27
top1(27) → 1
ok1(11) → 27
ok1(12) → 12
ok1(12) → 13
mark1(13) → 12
mark1(13) → 13
mark1(14) → 14
mark1(14) → 24
ok1(15) → 15
ok1(15) → 19
ok1(16) → 16
ok1(16) → 26
ok1(17) → 17
ok1(17) → 20
mark1(18) → 18
mark1(18) → 25
mark1(19) → 15
mark1(19) → 19
mark1(20) → 17
mark1(20) → 20
ok1(21) → 21
ok1(21) → 22
mark1(22) → 21
mark1(22) → 22
ok1(23) → 27
ok1(24) → 14
ok1(24) → 24
ok1(25) → 18
ok1(25) → 25
mark1(26) → 16
mark1(26) → 26
active2(11) → 28
top2(28) → 1
active2(23) → 28