(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, n__app(activate(XS), YS))
from(X) → cons(X, n__from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS)))
prefix(L) → cons(nil, n__zWadr(L, prefix(L)))
app(X1, X2) → n__app(X1, X2)
from(X) → n__from(X)
zWadr(X1, X2) → n__zWadr(X1, X2)
activate(n__app(X1, X2)) → app(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__zWadr(X1, X2)) → zWadr(X1, X2)
activate(X) → X

Rewrite Strategy: FULL

(1) InfiniteLowerBoundProof (EQUIVALENT transformation)

The loop following loop proves infinite runtime complexity:
The rewrite sequence
prefix(L) →+ cons(nil, n__zWadr(L, prefix(L)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1].
The pumping substitution is [ ].
The result substitution is [ ].