* Step 1: DependencyPairs WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            sel(0(),cons(X,Y)) -> X
            sel(s(X),cons(Y,Z)) -> sel(X,activate(Z))
        - Signature:
            {activate/1,from/1,sel/2} / {0/0,cons/2,n__from/1,s/1}
        - Obligation:
             runtime complexity wrt. defined symbols {activate,from,sel} and constructors {0,cons,n__from,s}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following weak dependency pairs:
        
        Strict DPs
          activate#(X) -> c_1(X)
          activate#(n__from(X)) -> c_2(from#(X))
          from#(X) -> c_3(X,X)
          from#(X) -> c_4(X)
          sel#(0(),cons(X,Y)) -> c_5(X)
          sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z)))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(X) -> c_1(X)
            activate#(n__from(X)) -> c_2(from#(X))
            from#(X) -> c_3(X,X)
            from#(X) -> c_4(X)
            sel#(0(),cons(X,Y)) -> c_5(X)
            sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z)))
        - Strict TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            sel(0(),cons(X,Y)) -> X
            sel(s(X),cons(Y,Z)) -> sel(X,activate(Z))
        - Signature:
            {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/1,c_2/1,c_3/2,c_4/1
            ,c_5/1,c_6/1}
        - Obligation:
             runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          activate(X) -> X
          activate(n__from(X)) -> from(X)
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
          activate#(X) -> c_1(X)
          activate#(n__from(X)) -> c_2(from#(X))
          from#(X) -> c_3(X,X)
          from#(X) -> c_4(X)
          sel#(0(),cons(X,Y)) -> c_5(X)
          sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z)))
* Step 3: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(X) -> c_1(X)
            activate#(n__from(X)) -> c_2(from#(X))
            from#(X) -> c_3(X,X)
            from#(X) -> c_4(X)
            sel#(0(),cons(X,Y)) -> c_5(X)
            sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z)))
        - Strict TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
        - Signature:
            {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/1,c_2/1,c_3/2,c_4/1
            ,c_5/1,c_6/1}
        - Obligation:
             runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(sel#) = {2},
            uargs(c_2) = {1},
            uargs(c_6) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                    p(0) = [0]         
             p(activate) = [1] x1 + [0]
                 p(cons) = [1] x2 + [5]
                 p(from) = [1] x1 + [0]
              p(n__from) = [1] x1 + [0]
                    p(s) = [1] x1 + [0]
                  p(sel) = [0]         
            p(activate#) = [3] x1 + [0]
                p(from#) = [3] x1 + [0]
                 p(sel#) = [1] x2 + [0]
                  p(c_1) = [3] x1 + [0]
                  p(c_2) = [1] x1 + [0]
                  p(c_3) = [3] x1 + [0]
                  p(c_4) = [3] x1 + [0]
                  p(c_5) = [0]         
                  p(c_6) = [1] x1 + [0]
          
          Following rules are strictly oriented:
           sel#(0(),cons(X,Y)) = [1] Y + [5]             
                               > [0]                     
                               = c_5(X)                  
          
          sel#(s(X),cons(Y,Z)) = [1] Z + [5]             
                               > [1] Z + [0]             
                               = c_6(sel#(X,activate(Z)))
          
          
          Following rules are (at-least) weakly oriented:
                   activate#(X) =  [3] X + [0]          
                                >= [3] X + [0]          
                                =  c_1(X)               
          
          activate#(n__from(X)) =  [3] X + [0]          
                                >= [3] X + [0]          
                                =  c_2(from#(X))        
          
                       from#(X) =  [3] X + [0]          
                                >= [3] X + [0]          
                                =  c_3(X,X)             
          
                       from#(X) =  [3] X + [0]          
                                >= [3] X + [0]          
                                =  c_4(X)               
          
                    activate(X) =  [1] X + [0]          
                                >= [1] X + [0]          
                                =  X                    
          
           activate(n__from(X)) =  [1] X + [0]          
                                >= [1] X + [0]          
                                =  from(X)              
          
                        from(X) =  [1] X + [0]          
                                >= [1] X + [5]          
                                =  cons(X,n__from(s(X)))
          
                        from(X) =  [1] X + [0]          
                                >= [1] X + [0]          
                                =  n__from(X)           
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 4: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(X) -> c_1(X)
            activate#(n__from(X)) -> c_2(from#(X))
            from#(X) -> c_3(X,X)
            from#(X) -> c_4(X)
        - Strict TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
        - Weak DPs:
            sel#(0(),cons(X,Y)) -> c_5(X)
            sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z)))
        - Signature:
            {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/1,c_2/1,c_3/2,c_4/1
            ,c_5/1,c_6/1}
        - Obligation:
             runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(sel#) = {2},
            uargs(c_2) = {1},
            uargs(c_6) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                    p(0) = [0]                  
             p(activate) = [1] x1 + [2]         
                 p(cons) = [1] x2 + [7]         
                 p(from) = [0]                  
              p(n__from) = [1]                  
                    p(s) = [1] x1 + [0]         
                  p(sel) = [4]                  
            p(activate#) = [1] x1 + [0]         
                p(from#) = [0]                  
                 p(sel#) = [2] x1 + [1] x2 + [8]
                  p(c_1) = [0]                  
                  p(c_2) = [1] x1 + [0]         
                  p(c_3) = [0]                  
                  p(c_4) = [0]                  
                  p(c_5) = [15]                 
                  p(c_6) = [1] x1 + [2]         
          
          Following rules are strictly oriented:
          activate#(n__from(X)) = [1]          
                                > [0]          
                                = c_2(from#(X))
          
                    activate(X) = [1] X + [2]  
                                > [1] X + [0]  
                                = X            
          
           activate(n__from(X)) = [3]          
                                > [0]          
                                = from(X)      
          
          
          Following rules are (at-least) weakly oriented:
                  activate#(X) =  [1] X + [0]             
                               >= [0]                     
                               =  c_1(X)                  
          
                      from#(X) =  [0]                     
                               >= [0]                     
                               =  c_3(X,X)                
          
                      from#(X) =  [0]                     
                               >= [0]                     
                               =  c_4(X)                  
          
           sel#(0(),cons(X,Y)) =  [1] Y + [15]            
                               >= [15]                    
                               =  c_5(X)                  
          
          sel#(s(X),cons(Y,Z)) =  [2] X + [1] Z + [15]    
                               >= [2] X + [1] Z + [12]    
                               =  c_6(sel#(X,activate(Z)))
          
                       from(X) =  [0]                     
                               >= [8]                     
                               =  cons(X,n__from(s(X)))   
          
                       from(X) =  [0]                     
                               >= [1]                     
                               =  n__from(X)              
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 5: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(X) -> c_1(X)
            from#(X) -> c_3(X,X)
            from#(X) -> c_4(X)
        - Strict TRS:
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
        - Weak DPs:
            activate#(n__from(X)) -> c_2(from#(X))
            sel#(0(),cons(X,Y)) -> c_5(X)
            sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z)))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
        - Signature:
            {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/1,c_2/1,c_3/2,c_4/1
            ,c_5/1,c_6/1}
        - Obligation:
             runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(sel#) = {2},
            uargs(c_2) = {1},
            uargs(c_6) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                    p(0) = [0]         
             p(activate) = [1] x1 + [0]
                 p(cons) = [1] x2 + [0]
                 p(from) = [1] x1 + [0]
              p(n__from) = [1] x1 + [0]
                    p(s) = [1] x1 + [0]
                  p(sel) = [0]         
            p(activate#) = [1]         
                p(from#) = [1]         
                 p(sel#) = [1] x2 + [0]
                  p(c_1) = [0]         
                  p(c_2) = [1] x1 + [0]
                  p(c_3) = [0]         
                  p(c_4) = [0]         
                  p(c_5) = [0]         
                  p(c_6) = [1] x1 + [0]
          
          Following rules are strictly oriented:
          activate#(X) = [1]     
                       > [0]     
                       = c_1(X)  
          
              from#(X) = [1]     
                       > [0]     
                       = c_3(X,X)
          
              from#(X) = [1]     
                       > [0]     
                       = c_4(X)  
          
          
          Following rules are (at-least) weakly oriented:
          activate#(n__from(X)) =  [1]                     
                                >= [1]                     
                                =  c_2(from#(X))           
          
            sel#(0(),cons(X,Y)) =  [1] Y + [0]             
                                >= [0]                     
                                =  c_5(X)                  
          
           sel#(s(X),cons(Y,Z)) =  [1] Z + [0]             
                                >= [1] Z + [0]             
                                =  c_6(sel#(X,activate(Z)))
          
                    activate(X) =  [1] X + [0]             
                                >= [1] X + [0]             
                                =  X                       
          
           activate(n__from(X)) =  [1] X + [0]             
                                >= [1] X + [0]             
                                =  from(X)                 
          
                        from(X) =  [1] X + [0]             
                                >= [1] X + [0]             
                                =  cons(X,n__from(s(X)))   
          
                        from(X) =  [1] X + [0]             
                                >= [1] X + [0]             
                                =  n__from(X)              
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 6: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
        - Weak DPs:
            activate#(X) -> c_1(X)
            activate#(n__from(X)) -> c_2(from#(X))
            from#(X) -> c_3(X,X)
            from#(X) -> c_4(X)
            sel#(0(),cons(X,Y)) -> c_5(X)
            sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z)))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
        - Signature:
            {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/1,c_2/1,c_3/2,c_4/1
            ,c_5/1,c_6/1}
        - Obligation:
             runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(sel#) = {2},
            uargs(c_2) = {1},
            uargs(c_6) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                    p(0) = [0]                  
             p(activate) = [1] x1 + [4]         
                 p(cons) = [1] x2 + [0]         
                 p(from) = [4]                  
              p(n__from) = [2]                  
                    p(s) = [1] x1 + [1]         
                  p(sel) = [1] x1 + [1] x2 + [1]
            p(activate#) = [8]                  
                p(from#) = [1]                  
                 p(sel#) = [4] x1 + [1] x2 + [0]
                  p(c_1) = [8]                  
                  p(c_2) = [1] x1 + [7]         
                  p(c_3) = [1]                  
                  p(c_4) = [1]                  
                  p(c_5) = [0]                  
                  p(c_6) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
          from(X) = [4]                  
                  > [2]                  
                  = cons(X,n__from(s(X)))
          
          from(X) = [4]                  
                  > [2]                  
                  = n__from(X)           
          
          
          Following rules are (at-least) weakly oriented:
                   activate#(X) =  [8]                     
                                >= [8]                     
                                =  c_1(X)                  
          
          activate#(n__from(X)) =  [8]                     
                                >= [8]                     
                                =  c_2(from#(X))           
          
                       from#(X) =  [1]                     
                                >= [1]                     
                                =  c_3(X,X)                
          
                       from#(X) =  [1]                     
                                >= [1]                     
                                =  c_4(X)                  
          
            sel#(0(),cons(X,Y)) =  [1] Y + [0]             
                                >= [0]                     
                                =  c_5(X)                  
          
           sel#(s(X),cons(Y,Z)) =  [4] X + [1] Z + [4]     
                                >= [4] X + [1] Z + [4]     
                                =  c_6(sel#(X,activate(Z)))
          
                    activate(X) =  [1] X + [4]             
                                >= [1] X + [0]             
                                =  X                       
          
           activate(n__from(X)) =  [6]                     
                                >= [4]                     
                                =  from(X)                 
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 7: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            activate#(X) -> c_1(X)
            activate#(n__from(X)) -> c_2(from#(X))
            from#(X) -> c_3(X,X)
            from#(X) -> c_4(X)
            sel#(0(),cons(X,Y)) -> c_5(X)
            sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z)))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
        - Signature:
            {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/1,c_2/1,c_3/2,c_4/1
            ,c_5/1,c_6/1}
        - Obligation:
             runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))