0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 19 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtUsableRulesProof (⇔, 0 ms)
↳8 CdtProblem
↳9 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 78 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 13 ms)
↳12 CdtProblem
↳13 CdtKnowledgeProof (⇔, 0 ms)
↳14 BOUNDS(1, 1)
fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(X1, X2)
activate(n__from(X)) → from(X)
activate(n__add(X1, X2)) → add(X1, X2)
activate(n__len(X)) → len(X)
activate(X) → X
As the TRS does not nest defined symbols, we have rc = irc.
fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(X1, X2)
activate(n__from(X)) → from(X)
activate(n__add(X1, X2)) → add(X1, X2)
activate(n__len(X)) → len(X)
activate(X) → X
Tuples:
fst(0, z0) → nil
fst(s(z0), cons(z1, z2)) → cons(z1, n__fst(activate(z0), activate(z2)))
fst(z0, z1) → n__fst(z0, z1)
from(z0) → cons(z0, n__from(s(z0)))
from(z0) → n__from(z0)
add(0, z0) → z0
add(s(z0), z1) → s(n__add(activate(z0), z1))
add(z0, z1) → n__add(z0, z1)
len(nil) → 0
len(cons(z0, z1)) → s(n__len(activate(z1)))
len(z0) → n__len(z0)
activate(n__fst(z0, z1)) → fst(z0, z1)
activate(n__from(z0)) → from(z0)
activate(n__add(z0, z1)) → add(z0, z1)
activate(n__len(z0)) → len(z0)
activate(z0) → z0
S tuples:
FST(0, z0) → c
FST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z0), ACTIVATE(z2))
FST(z0, z1) → c2
FROM(z0) → c3
FROM(z0) → c4
ADD(0, z0) → c5
ADD(s(z0), z1) → c6(ACTIVATE(z0))
ADD(z0, z1) → c7
LEN(nil) → c8
LEN(cons(z0, z1)) → c9(ACTIVATE(z1))
LEN(z0) → c10
ACTIVATE(n__fst(z0, z1)) → c11(FST(z0, z1))
ACTIVATE(n__from(z0)) → c12(FROM(z0))
ACTIVATE(n__add(z0, z1)) → c13(ADD(z0, z1))
ACTIVATE(n__len(z0)) → c14(LEN(z0))
ACTIVATE(z0) → c15
K tuples:none
FST(0, z0) → c
FST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z0), ACTIVATE(z2))
FST(z0, z1) → c2
FROM(z0) → c3
FROM(z0) → c4
ADD(0, z0) → c5
ADD(s(z0), z1) → c6(ACTIVATE(z0))
ADD(z0, z1) → c7
LEN(nil) → c8
LEN(cons(z0, z1)) → c9(ACTIVATE(z1))
LEN(z0) → c10
ACTIVATE(n__fst(z0, z1)) → c11(FST(z0, z1))
ACTIVATE(n__from(z0)) → c12(FROM(z0))
ACTIVATE(n__add(z0, z1)) → c13(ADD(z0, z1))
ACTIVATE(n__len(z0)) → c14(LEN(z0))
ACTIVATE(z0) → c15
fst, from, add, len, activate
FST, FROM, ADD, LEN, ACTIVATE
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15
FST(z0, z1) → c2
LEN(z0) → c10
ACTIVATE(z0) → c15
ADD(z0, z1) → c7
FROM(z0) → c3
FST(0, z0) → c
ADD(0, z0) → c5
LEN(nil) → c8
ACTIVATE(n__from(z0)) → c12(FROM(z0))
FROM(z0) → c4
Tuples:
fst(0, z0) → nil
fst(s(z0), cons(z1, z2)) → cons(z1, n__fst(activate(z0), activate(z2)))
fst(z0, z1) → n__fst(z0, z1)
from(z0) → cons(z0, n__from(s(z0)))
from(z0) → n__from(z0)
add(0, z0) → z0
add(s(z0), z1) → s(n__add(activate(z0), z1))
add(z0, z1) → n__add(z0, z1)
len(nil) → 0
len(cons(z0, z1)) → s(n__len(activate(z1)))
len(z0) → n__len(z0)
activate(n__fst(z0, z1)) → fst(z0, z1)
activate(n__from(z0)) → from(z0)
activate(n__add(z0, z1)) → add(z0, z1)
activate(n__len(z0)) → len(z0)
activate(z0) → z0
S tuples:
FST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z0), ACTIVATE(z2))
ADD(s(z0), z1) → c6(ACTIVATE(z0))
LEN(cons(z0, z1)) → c9(ACTIVATE(z1))
ACTIVATE(n__fst(z0, z1)) → c11(FST(z0, z1))
ACTIVATE(n__add(z0, z1)) → c13(ADD(z0, z1))
ACTIVATE(n__len(z0)) → c14(LEN(z0))
K tuples:none
FST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z0), ACTIVATE(z2))
ADD(s(z0), z1) → c6(ACTIVATE(z0))
LEN(cons(z0, z1)) → c9(ACTIVATE(z1))
ACTIVATE(n__fst(z0, z1)) → c11(FST(z0, z1))
ACTIVATE(n__add(z0, z1)) → c13(ADD(z0, z1))
ACTIVATE(n__len(z0)) → c14(LEN(z0))
fst, from, add, len, activate
FST, ADD, LEN, ACTIVATE
c1, c6, c9, c11, c13, c14
fst(0, z0) → nil
fst(s(z0), cons(z1, z2)) → cons(z1, n__fst(activate(z0), activate(z2)))
fst(z0, z1) → n__fst(z0, z1)
from(z0) → cons(z0, n__from(s(z0)))
from(z0) → n__from(z0)
add(0, z0) → z0
add(s(z0), z1) → s(n__add(activate(z0), z1))
add(z0, z1) → n__add(z0, z1)
len(nil) → 0
len(cons(z0, z1)) → s(n__len(activate(z1)))
len(z0) → n__len(z0)
activate(n__fst(z0, z1)) → fst(z0, z1)
activate(n__from(z0)) → from(z0)
activate(n__add(z0, z1)) → add(z0, z1)
activate(n__len(z0)) → len(z0)
activate(z0) → z0
S tuples:
FST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z0), ACTIVATE(z2))
ADD(s(z0), z1) → c6(ACTIVATE(z0))
LEN(cons(z0, z1)) → c9(ACTIVATE(z1))
ACTIVATE(n__fst(z0, z1)) → c11(FST(z0, z1))
ACTIVATE(n__add(z0, z1)) → c13(ADD(z0, z1))
ACTIVATE(n__len(z0)) → c14(LEN(z0))
K tuples:none
FST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z0), ACTIVATE(z2))
ADD(s(z0), z1) → c6(ACTIVATE(z0))
LEN(cons(z0, z1)) → c9(ACTIVATE(z1))
ACTIVATE(n__fst(z0, z1)) → c11(FST(z0, z1))
ACTIVATE(n__add(z0, z1)) → c13(ADD(z0, z1))
ACTIVATE(n__len(z0)) → c14(LEN(z0))
FST, ADD, LEN, ACTIVATE
c1, c6, c9, c11, c13, c14
We considered the (Usable) Rules:none
FST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z0), ACTIVATE(z2))
LEN(cons(z0, z1)) → c9(ACTIVATE(z1))
The order we found is given by the following interpretation:
FST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z0), ACTIVATE(z2))
ADD(s(z0), z1) → c6(ACTIVATE(z0))
LEN(cons(z0, z1)) → c9(ACTIVATE(z1))
ACTIVATE(n__fst(z0, z1)) → c11(FST(z0, z1))
ACTIVATE(n__add(z0, z1)) → c13(ADD(z0, z1))
ACTIVATE(n__len(z0)) → c14(LEN(z0))
POL(ACTIVATE(x1)) = x1
POL(ADD(x1, x2)) = x1
POL(FST(x1, x2)) = x1 + x2
POL(LEN(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c11(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c6(x1)) = x1
POL(c9(x1)) = x1
POL(cons(x1, x2)) = [1] + x2
POL(n__add(x1, x2)) = x1
POL(n__fst(x1, x2)) = x1 + x2
POL(n__len(x1)) = x1
POL(s(x1)) = x1
S tuples:
FST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z0), ACTIVATE(z2))
ADD(s(z0), z1) → c6(ACTIVATE(z0))
LEN(cons(z0, z1)) → c9(ACTIVATE(z1))
ACTIVATE(n__fst(z0, z1)) → c11(FST(z0, z1))
ACTIVATE(n__add(z0, z1)) → c13(ADD(z0, z1))
ACTIVATE(n__len(z0)) → c14(LEN(z0))
K tuples:
ADD(s(z0), z1) → c6(ACTIVATE(z0))
ACTIVATE(n__fst(z0, z1)) → c11(FST(z0, z1))
ACTIVATE(n__add(z0, z1)) → c13(ADD(z0, z1))
ACTIVATE(n__len(z0)) → c14(LEN(z0))
Defined Rule Symbols:none
FST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z0), ACTIVATE(z2))
LEN(cons(z0, z1)) → c9(ACTIVATE(z1))
FST, ADD, LEN, ACTIVATE
c1, c6, c9, c11, c13, c14
We considered the (Usable) Rules:none
ADD(s(z0), z1) → c6(ACTIVATE(z0))
ACTIVATE(n__len(z0)) → c14(LEN(z0))
The order we found is given by the following interpretation:
FST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z0), ACTIVATE(z2))
ADD(s(z0), z1) → c6(ACTIVATE(z0))
LEN(cons(z0, z1)) → c9(ACTIVATE(z1))
ACTIVATE(n__fst(z0, z1)) → c11(FST(z0, z1))
ACTIVATE(n__add(z0, z1)) → c13(ADD(z0, z1))
ACTIVATE(n__len(z0)) → c14(LEN(z0))
POL(ACTIVATE(x1)) = x1
POL(ADD(x1, x2)) = x1
POL(FST(x1, x2)) = x1 + x2
POL(LEN(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c11(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c6(x1)) = x1
POL(c9(x1)) = x1
POL(cons(x1, x2)) = [1] + x2
POL(n__add(x1, x2)) = x1
POL(n__fst(x1, x2)) = x1 + x2
POL(n__len(x1)) = [1] + x1
POL(s(x1)) = [1] + x1
S tuples:
FST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z0), ACTIVATE(z2))
ADD(s(z0), z1) → c6(ACTIVATE(z0))
LEN(cons(z0, z1)) → c9(ACTIVATE(z1))
ACTIVATE(n__fst(z0, z1)) → c11(FST(z0, z1))
ACTIVATE(n__add(z0, z1)) → c13(ADD(z0, z1))
ACTIVATE(n__len(z0)) → c14(LEN(z0))
K tuples:
ACTIVATE(n__fst(z0, z1)) → c11(FST(z0, z1))
ACTIVATE(n__add(z0, z1)) → c13(ADD(z0, z1))
Defined Rule Symbols:none
FST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z0), ACTIVATE(z2))
LEN(cons(z0, z1)) → c9(ACTIVATE(z1))
ADD(s(z0), z1) → c6(ACTIVATE(z0))
ACTIVATE(n__len(z0)) → c14(LEN(z0))
FST, ADD, LEN, ACTIVATE
c1, c6, c9, c11, c13, c14
Now S is empty
ACTIVATE(n__fst(z0, z1)) → c11(FST(z0, z1))
ACTIVATE(n__add(z0, z1)) → c13(ADD(z0, z1))
FST(s(z0), cons(z1, z2)) → c1(ACTIVATE(z0), ACTIVATE(z2))
ADD(s(z0), z1) → c6(ACTIVATE(z0))