* Step 1: ToInnermost WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: add(0(),X) -> X add(s(),Y) -> s() from(X) -> cons(X) fst(0(),Z) -> nil() fst(s(),cons(Y)) -> cons(Y) len(cons(X)) -> s() len(nil()) -> 0() - Signature: {add/2,from/1,fst/2,len/1} / {0/0,cons/1,nil/0,s/0} - Obligation: runtime complexity wrt. defined symbols {add,from,fst,len} and constructors {0,cons,nil,s} + Applied Processor: ToInnermost + Details: switch to innermost, as the system is overlay and right linear and does not contain weak rules * Step 2: DependencyPairs WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: add(0(),X) -> X add(s(),Y) -> s() from(X) -> cons(X) fst(0(),Z) -> nil() fst(s(),cons(Y)) -> cons(Y) len(cons(X)) -> s() len(nil()) -> 0() - Signature: {add/2,from/1,fst/2,len/1} / {0/0,cons/1,nil/0,s/0} - Obligation: innermost runtime complexity wrt. defined symbols {add,from,fst,len} and constructors {0,cons,nil,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs add#(0(),X) -> c_1() add#(s(),Y) -> c_2() from#(X) -> c_3() fst#(0(),Z) -> c_4() fst#(s(),cons(Y)) -> c_5() len#(cons(X)) -> c_6() len#(nil()) -> c_7() Weak DPs and mark the set of starting terms. * Step 3: UsableRules WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: add#(0(),X) -> c_1() add#(s(),Y) -> c_2() from#(X) -> c_3() fst#(0(),Z) -> c_4() fst#(s(),cons(Y)) -> c_5() len#(cons(X)) -> c_6() len#(nil()) -> c_7() - Weak TRS: add(0(),X) -> X add(s(),Y) -> s() from(X) -> cons(X) fst(0(),Z) -> nil() fst(s(),cons(Y)) -> cons(Y) len(cons(X)) -> s() len(nil()) -> 0() - Signature: {add/2,from/1,fst/2,len/1,add#/2,from#/1,fst#/2,len#/1} / {0/0,cons/1,nil/0,s/0,c_1/0,c_2/0,c_3/0,c_4/0 ,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {add#,from#,fst#,len#} and constructors {0,cons,nil,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: add#(0(),X) -> c_1() add#(s(),Y) -> c_2() from#(X) -> c_3() fst#(0(),Z) -> c_4() fst#(s(),cons(Y)) -> c_5() len#(cons(X)) -> c_6() len#(nil()) -> c_7() * Step 4: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: add#(0(),X) -> c_1() add#(s(),Y) -> c_2() from#(X) -> c_3() fst#(0(),Z) -> c_4() fst#(s(),cons(Y)) -> c_5() len#(cons(X)) -> c_6() len#(nil()) -> c_7() - Signature: {add/2,from/1,fst/2,len/1,add#/2,from#/1,fst#/2,len#/1} / {0/0,cons/1,nil/0,s/0,c_1/0,c_2/0,c_3/0,c_4/0 ,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {add#,from#,fst#,len#} and constructors {0,cons,nil,s} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:add#(0(),X) -> c_1() 2:S:add#(s(),Y) -> c_2() 3:S:from#(X) -> c_3() 4:S:fst#(0(),Z) -> c_4() 5:S:fst#(s(),cons(Y)) -> c_5() 6:S:len#(cons(X)) -> c_6() 7:S:len#(nil()) -> c_7() The dependency graph contains no loops, we remove all dependency pairs. * Step 5: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {add/2,from/1,fst/2,len/1,add#/2,from#/1,fst#/2,len#/1} / {0/0,cons/1,nil/0,s/0,c_1/0,c_2/0,c_3/0,c_4/0 ,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {add#,from#,fst#,len#} and constructors {0,cons,nil,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))