(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__f(f(X)) → a__c(f(g(f(X))))
a__c(X) → d(X)
a__h(X) → a__c(d(X))
mark(f(X)) → a__f(mark(X))
mark(c(X)) → a__c(X)
mark(h(X)) → a__h(mark(X))
mark(g(X)) → g(X)
mark(d(X)) → d(X)
a__f(X) → f(X)
a__c(X) → c(X)
a__h(X) → h(X)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
mark(f(X)) →+ a__f(mark(X))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / f(X)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a__f(f(X)) → a__c(f(g(f(X))))
a__c(X) → d(X)
a__h(X) → a__c(d(X))
mark(f(X)) → a__f(mark(X))
mark(c(X)) → a__c(X)
mark(h(X)) → a__h(mark(X))
mark(g(X)) → g(X)
mark(d(X)) → d(X)
a__f(X) → f(X)
a__c(X) → c(X)
a__h(X) → h(X)
S is empty.
Rewrite Strategy: FULL
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
a__c/0
g/0
d/0
c/0
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a__f(f(X)) → a__c
a__c → d
a__h(X) → a__c
mark(f(X)) → a__f(mark(X))
mark(c) → a__c
mark(h(X)) → a__h(mark(X))
mark(g) → g
mark(d) → d
a__f(X) → f(X)
a__c → c
a__h(X) → h(X)
S is empty.
Rewrite Strategy: FULL
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
TRS:
Rules:
a__f(f(X)) → a__c
a__c → d
a__h(X) → a__c
mark(f(X)) → a__f(mark(X))
mark(c) → a__c
mark(h(X)) → a__h(mark(X))
mark(g) → g
mark(d) → d
a__f(X) → f(X)
a__c → c
a__h(X) → h(X)
Types:
a__f :: f:d:c:h:g → f:d:c:h:g
f :: f:d:c:h:g → f:d:c:h:g
a__c :: f:d:c:h:g
d :: f:d:c:h:g
a__h :: f:d:c:h:g → f:d:c:h:g
mark :: f:d:c:h:g → f:d:c:h:g
c :: f:d:c:h:g
h :: f:d:c:h:g → f:d:c:h:g
g :: f:d:c:h:g
hole_f:d:c:h:g1_0 :: f:d:c:h:g
gen_f:d:c:h:g2_0 :: Nat → f:d:c:h:g
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
mark
(10) Obligation:
TRS:
Rules:
a__f(
f(
X)) →
a__ca__c →
da__h(
X) →
a__cmark(
f(
X)) →
a__f(
mark(
X))
mark(
c) →
a__cmark(
h(
X)) →
a__h(
mark(
X))
mark(
g) →
gmark(
d) →
da__f(
X) →
f(
X)
a__c →
ca__h(
X) →
h(
X)
Types:
a__f :: f:d:c:h:g → f:d:c:h:g
f :: f:d:c:h:g → f:d:c:h:g
a__c :: f:d:c:h:g
d :: f:d:c:h:g
a__h :: f:d:c:h:g → f:d:c:h:g
mark :: f:d:c:h:g → f:d:c:h:g
c :: f:d:c:h:g
h :: f:d:c:h:g → f:d:c:h:g
g :: f:d:c:h:g
hole_f:d:c:h:g1_0 :: f:d:c:h:g
gen_f:d:c:h:g2_0 :: Nat → f:d:c:h:g
Generator Equations:
gen_f:d:c:h:g2_0(0) ⇔ d
gen_f:d:c:h:g2_0(+(x, 1)) ⇔ f(gen_f:d:c:h:g2_0(x))
The following defined symbols remain to be analysed:
mark
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
mark(
gen_f:d:c:h:g2_0(
+(
1,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
mark(gen_f:d:c:h:g2_0(+(1, 0)))
Induction Step:
mark(gen_f:d:c:h:g2_0(+(1, +(n4_0, 1)))) →RΩ(1)
a__f(mark(gen_f:d:c:h:g2_0(+(1, n4_0)))) →IH
a__f(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
a__f(
f(
X)) →
a__ca__c →
da__h(
X) →
a__cmark(
f(
X)) →
a__f(
mark(
X))
mark(
c) →
a__cmark(
h(
X)) →
a__h(
mark(
X))
mark(
g) →
gmark(
d) →
da__f(
X) →
f(
X)
a__c →
ca__h(
X) →
h(
X)
Types:
a__f :: f:d:c:h:g → f:d:c:h:g
f :: f:d:c:h:g → f:d:c:h:g
a__c :: f:d:c:h:g
d :: f:d:c:h:g
a__h :: f:d:c:h:g → f:d:c:h:g
mark :: f:d:c:h:g → f:d:c:h:g
c :: f:d:c:h:g
h :: f:d:c:h:g → f:d:c:h:g
g :: f:d:c:h:g
hole_f:d:c:h:g1_0 :: f:d:c:h:g
gen_f:d:c:h:g2_0 :: Nat → f:d:c:h:g
Lemmas:
mark(gen_f:d:c:h:g2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_f:d:c:h:g2_0(0) ⇔ d
gen_f:d:c:h:g2_0(+(x, 1)) ⇔ f(gen_f:d:c:h:g2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_f:d:c:h:g2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
a__f(
f(
X)) →
a__ca__c →
da__h(
X) →
a__cmark(
f(
X)) →
a__f(
mark(
X))
mark(
c) →
a__cmark(
h(
X)) →
a__h(
mark(
X))
mark(
g) →
gmark(
d) →
da__f(
X) →
f(
X)
a__c →
ca__h(
X) →
h(
X)
Types:
a__f :: f:d:c:h:g → f:d:c:h:g
f :: f:d:c:h:g → f:d:c:h:g
a__c :: f:d:c:h:g
d :: f:d:c:h:g
a__h :: f:d:c:h:g → f:d:c:h:g
mark :: f:d:c:h:g → f:d:c:h:g
c :: f:d:c:h:g
h :: f:d:c:h:g → f:d:c:h:g
g :: f:d:c:h:g
hole_f:d:c:h:g1_0 :: f:d:c:h:g
gen_f:d:c:h:g2_0 :: Nat → f:d:c:h:g
Lemmas:
mark(gen_f:d:c:h:g2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_f:d:c:h:g2_0(0) ⇔ d
gen_f:d:c:h:g2_0(+(x, 1)) ⇔ f(gen_f:d:c:h:g2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_f:d:c:h:g2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(18) BOUNDS(n^1, INF)