### (0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(X, n__g(X), Y) → f(activate(Y), activate(Y), activate(Y))
g(b) → c
bc
g(X) → n__g(X)
activate(n__g(X)) → g(activate(X))
activate(X) → X

Rewrite Strategy: FULL

### (1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
activate(n__g(X)) →+ g(activate(X))
gives rise to a decreasing loop by considering the right hand sides subterm at position .
The pumping substitution is [X / n__g(X)].
The result substitution is [ ].

### (3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

### (4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

f(X, n__g(X), Y) → f(activate(Y), activate(Y), activate(Y))
g(b) → c
bc
g(X) → n__g(X)
activate(n__g(X)) → g(activate(X))
activate(X) → X

S is empty.
Rewrite Strategy: FULL

Infered types.

### (6) Obligation:

TRS:
Rules:
f(X, n__g(X), Y) → f(activate(Y), activate(Y), activate(Y))
g(b) → c
bc
g(X) → n__g(X)
activate(n__g(X)) → g(activate(X))
activate(X) → X

Types:
f :: n__g:c → n__g:c → n__g:c → f
n__g :: n__g:c → n__g:c
activate :: n__g:c → n__g:c
g :: n__g:c → n__g:c
b :: n__g:c
c :: n__g:c
hole_f1_0 :: f
hole_n__g:c2_0 :: n__g:c
gen_n__g:c3_0 :: Nat → n__g:c

### (7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
f, activate

They will be analysed ascendingly in the following order:
activate < f

### (8) Obligation:

TRS:
Rules:
f(X, n__g(X), Y) → f(activate(Y), activate(Y), activate(Y))
g(b) → c
bc
g(X) → n__g(X)
activate(n__g(X)) → g(activate(X))
activate(X) → X

Types:
f :: n__g:c → n__g:c → n__g:c → f
n__g :: n__g:c → n__g:c
activate :: n__g:c → n__g:c
g :: n__g:c → n__g:c
b :: n__g:c
c :: n__g:c
hole_f1_0 :: f
hole_n__g:c2_0 :: n__g:c
gen_n__g:c3_0 :: Nat → n__g:c

Generator Equations:
gen_n__g:c3_0(0) ⇔ c
gen_n__g:c3_0(+(x, 1)) ⇔ n__g(gen_n__g:c3_0(x))

The following defined symbols remain to be analysed:
activate, f

They will be analysed ascendingly in the following order:
activate < f

### (9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
activate(gen_n__g:c3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Induction Base:
activate(gen_n__g:c3_0(+(1, 0)))

Induction Step:
activate(gen_n__g:c3_0(+(1, +(n5_0, 1)))) →RΩ(1)
g(activate(gen_n__g:c3_0(+(1, n5_0)))) →IH
g(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (11) Obligation:

TRS:
Rules:
f(X, n__g(X), Y) → f(activate(Y), activate(Y), activate(Y))
g(b) → c
bc
g(X) → n__g(X)
activate(n__g(X)) → g(activate(X))
activate(X) → X

Types:
f :: n__g:c → n__g:c → n__g:c → f
n__g :: n__g:c → n__g:c
activate :: n__g:c → n__g:c
g :: n__g:c → n__g:c
b :: n__g:c
c :: n__g:c
hole_f1_0 :: f
hole_n__g:c2_0 :: n__g:c
gen_n__g:c3_0 :: Nat → n__g:c

Lemmas:
activate(gen_n__g:c3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_n__g:c3_0(0) ⇔ c
gen_n__g:c3_0(+(x, 1)) ⇔ n__g(gen_n__g:c3_0(x))

The following defined symbols remain to be analysed:
f

### (12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol f.

### (13) Obligation:

TRS:
Rules:
f(X, n__g(X), Y) → f(activate(Y), activate(Y), activate(Y))
g(b) → c
bc
g(X) → n__g(X)
activate(n__g(X)) → g(activate(X))
activate(X) → X

Types:
f :: n__g:c → n__g:c → n__g:c → f
n__g :: n__g:c → n__g:c
activate :: n__g:c → n__g:c
g :: n__g:c → n__g:c
b :: n__g:c
c :: n__g:c
hole_f1_0 :: f
hole_n__g:c2_0 :: n__g:c
gen_n__g:c3_0 :: Nat → n__g:c

Lemmas:
activate(gen_n__g:c3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_n__g:c3_0(0) ⇔ c
gen_n__g:c3_0(+(x, 1)) ⇔ n__g(gen_n__g:c3_0(x))

No more defined symbols left to analyse.

### (14) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
activate(gen_n__g:c3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

### (16) Obligation:

TRS:
Rules:
f(X, n__g(X), Y) → f(activate(Y), activate(Y), activate(Y))
g(b) → c
bc
g(X) → n__g(X)
activate(n__g(X)) → g(activate(X))
activate(X) → X

Types:
f :: n__g:c → n__g:c → n__g:c → f
n__g :: n__g:c → n__g:c
activate :: n__g:c → n__g:c
g :: n__g:c → n__g:c
b :: n__g:c
c :: n__g:c
hole_f1_0 :: f
hole_n__g:c2_0 :: n__g:c
gen_n__g:c3_0 :: Nat → n__g:c

Lemmas:
activate(gen_n__g:c3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_n__g:c3_0(0) ⇔ c
gen_n__g:c3_0(+(x, 1)) ⇔ n__g(gen_n__g:c3_0(x))

No more defined symbols left to analyse.

### (17) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
activate(gen_n__g:c3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)