(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(f(X, g(X), Y)) → mark(f(Y, Y, Y))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(X)) → g(active(X))
g(mark(X)) → mark(g(X))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(g(X)) → g(proper(X))
proper(b) → ok(b)
proper(c) → ok(c)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
g(mark(X)) →+ mark(g(X))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / mark(X)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
active(f(X, g(X), Y)) → mark(f(Y, Y, Y))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(X)) → g(active(X))
g(mark(X)) → mark(g(X))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(g(X)) → g(proper(X))
proper(b) → ok(b)
proper(c) → ok(c)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
active(f(X, g(X), Y)) → mark(f(Y, Y, Y))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(X)) → g(active(X))
g(mark(X)) → mark(g(X))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(g(X)) → g(proper(X))
proper(b) → ok(b)
proper(c) → ok(c)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: mark:b:c:ok → mark:b:c:ok
f :: mark:b:c:ok → mark:b:c:ok → mark:b:c:ok → mark:b:c:ok
g :: mark:b:c:ok → mark:b:c:ok
mark :: mark:b:c:ok → mark:b:c:ok
b :: mark:b:c:ok
c :: mark:b:c:ok
proper :: mark:b:c:ok → mark:b:c:ok
ok :: mark:b:c:ok → mark:b:c:ok
top :: mark:b:c:ok → top
hole_mark:b:c:ok1_0 :: mark:b:c:ok
hole_top2_0 :: top
gen_mark:b:c:ok3_0 :: Nat → mark:b:c:ok
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
active,
f,
g,
proper,
topThey will be analysed ascendingly in the following order:
f < active
g < active
active < top
f < proper
g < proper
proper < top
(8) Obligation:
TRS:
Rules:
active(
f(
X,
g(
X),
Y)) →
mark(
f(
Y,
Y,
Y))
active(
g(
b)) →
mark(
c)
active(
b) →
mark(
c)
active(
g(
X)) →
g(
active(
X))
g(
mark(
X)) →
mark(
g(
X))
proper(
f(
X1,
X2,
X3)) →
f(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
g(
X)) →
g(
proper(
X))
proper(
b) →
ok(
b)
proper(
c) →
ok(
c)
f(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
f(
X1,
X2,
X3))
g(
ok(
X)) →
ok(
g(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: mark:b:c:ok → mark:b:c:ok
f :: mark:b:c:ok → mark:b:c:ok → mark:b:c:ok → mark:b:c:ok
g :: mark:b:c:ok → mark:b:c:ok
mark :: mark:b:c:ok → mark:b:c:ok
b :: mark:b:c:ok
c :: mark:b:c:ok
proper :: mark:b:c:ok → mark:b:c:ok
ok :: mark:b:c:ok → mark:b:c:ok
top :: mark:b:c:ok → top
hole_mark:b:c:ok1_0 :: mark:b:c:ok
hole_top2_0 :: top
gen_mark:b:c:ok3_0 :: Nat → mark:b:c:ok
Generator Equations:
gen_mark:b:c:ok3_0(0) ⇔ b
gen_mark:b:c:ok3_0(+(x, 1)) ⇔ mark(gen_mark:b:c:ok3_0(x))
The following defined symbols remain to be analysed:
f, active, g, proper, top
They will be analysed ascendingly in the following order:
f < active
g < active
active < top
f < proper
g < proper
proper < top
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(10) Obligation:
TRS:
Rules:
active(
f(
X,
g(
X),
Y)) →
mark(
f(
Y,
Y,
Y))
active(
g(
b)) →
mark(
c)
active(
b) →
mark(
c)
active(
g(
X)) →
g(
active(
X))
g(
mark(
X)) →
mark(
g(
X))
proper(
f(
X1,
X2,
X3)) →
f(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
g(
X)) →
g(
proper(
X))
proper(
b) →
ok(
b)
proper(
c) →
ok(
c)
f(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
f(
X1,
X2,
X3))
g(
ok(
X)) →
ok(
g(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: mark:b:c:ok → mark:b:c:ok
f :: mark:b:c:ok → mark:b:c:ok → mark:b:c:ok → mark:b:c:ok
g :: mark:b:c:ok → mark:b:c:ok
mark :: mark:b:c:ok → mark:b:c:ok
b :: mark:b:c:ok
c :: mark:b:c:ok
proper :: mark:b:c:ok → mark:b:c:ok
ok :: mark:b:c:ok → mark:b:c:ok
top :: mark:b:c:ok → top
hole_mark:b:c:ok1_0 :: mark:b:c:ok
hole_top2_0 :: top
gen_mark:b:c:ok3_0 :: Nat → mark:b:c:ok
Generator Equations:
gen_mark:b:c:ok3_0(0) ⇔ b
gen_mark:b:c:ok3_0(+(x, 1)) ⇔ mark(gen_mark:b:c:ok3_0(x))
The following defined symbols remain to be analysed:
g, active, proper, top
They will be analysed ascendingly in the following order:
g < active
active < top
g < proper
proper < top
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
g(
gen_mark:b:c:ok3_0(
+(
1,
n17_0))) →
*4_0, rt ∈ Ω(n17
0)
Induction Base:
g(gen_mark:b:c:ok3_0(+(1, 0)))
Induction Step:
g(gen_mark:b:c:ok3_0(+(1, +(n17_0, 1)))) →RΩ(1)
mark(g(gen_mark:b:c:ok3_0(+(1, n17_0)))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
active(
f(
X,
g(
X),
Y)) →
mark(
f(
Y,
Y,
Y))
active(
g(
b)) →
mark(
c)
active(
b) →
mark(
c)
active(
g(
X)) →
g(
active(
X))
g(
mark(
X)) →
mark(
g(
X))
proper(
f(
X1,
X2,
X3)) →
f(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
g(
X)) →
g(
proper(
X))
proper(
b) →
ok(
b)
proper(
c) →
ok(
c)
f(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
f(
X1,
X2,
X3))
g(
ok(
X)) →
ok(
g(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: mark:b:c:ok → mark:b:c:ok
f :: mark:b:c:ok → mark:b:c:ok → mark:b:c:ok → mark:b:c:ok
g :: mark:b:c:ok → mark:b:c:ok
mark :: mark:b:c:ok → mark:b:c:ok
b :: mark:b:c:ok
c :: mark:b:c:ok
proper :: mark:b:c:ok → mark:b:c:ok
ok :: mark:b:c:ok → mark:b:c:ok
top :: mark:b:c:ok → top
hole_mark:b:c:ok1_0 :: mark:b:c:ok
hole_top2_0 :: top
gen_mark:b:c:ok3_0 :: Nat → mark:b:c:ok
Lemmas:
g(gen_mark:b:c:ok3_0(+(1, n17_0))) → *4_0, rt ∈ Ω(n170)
Generator Equations:
gen_mark:b:c:ok3_0(0) ⇔ b
gen_mark:b:c:ok3_0(+(x, 1)) ⇔ mark(gen_mark:b:c:ok3_0(x))
The following defined symbols remain to be analysed:
active, proper, top
They will be analysed ascendingly in the following order:
active < top
proper < top
(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol active.
(15) Obligation:
TRS:
Rules:
active(
f(
X,
g(
X),
Y)) →
mark(
f(
Y,
Y,
Y))
active(
g(
b)) →
mark(
c)
active(
b) →
mark(
c)
active(
g(
X)) →
g(
active(
X))
g(
mark(
X)) →
mark(
g(
X))
proper(
f(
X1,
X2,
X3)) →
f(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
g(
X)) →
g(
proper(
X))
proper(
b) →
ok(
b)
proper(
c) →
ok(
c)
f(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
f(
X1,
X2,
X3))
g(
ok(
X)) →
ok(
g(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: mark:b:c:ok → mark:b:c:ok
f :: mark:b:c:ok → mark:b:c:ok → mark:b:c:ok → mark:b:c:ok
g :: mark:b:c:ok → mark:b:c:ok
mark :: mark:b:c:ok → mark:b:c:ok
b :: mark:b:c:ok
c :: mark:b:c:ok
proper :: mark:b:c:ok → mark:b:c:ok
ok :: mark:b:c:ok → mark:b:c:ok
top :: mark:b:c:ok → top
hole_mark:b:c:ok1_0 :: mark:b:c:ok
hole_top2_0 :: top
gen_mark:b:c:ok3_0 :: Nat → mark:b:c:ok
Lemmas:
g(gen_mark:b:c:ok3_0(+(1, n17_0))) → *4_0, rt ∈ Ω(n170)
Generator Equations:
gen_mark:b:c:ok3_0(0) ⇔ b
gen_mark:b:c:ok3_0(+(x, 1)) ⇔ mark(gen_mark:b:c:ok3_0(x))
The following defined symbols remain to be analysed:
proper, top
They will be analysed ascendingly in the following order:
proper < top
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol proper.
(17) Obligation:
TRS:
Rules:
active(
f(
X,
g(
X),
Y)) →
mark(
f(
Y,
Y,
Y))
active(
g(
b)) →
mark(
c)
active(
b) →
mark(
c)
active(
g(
X)) →
g(
active(
X))
g(
mark(
X)) →
mark(
g(
X))
proper(
f(
X1,
X2,
X3)) →
f(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
g(
X)) →
g(
proper(
X))
proper(
b) →
ok(
b)
proper(
c) →
ok(
c)
f(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
f(
X1,
X2,
X3))
g(
ok(
X)) →
ok(
g(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: mark:b:c:ok → mark:b:c:ok
f :: mark:b:c:ok → mark:b:c:ok → mark:b:c:ok → mark:b:c:ok
g :: mark:b:c:ok → mark:b:c:ok
mark :: mark:b:c:ok → mark:b:c:ok
b :: mark:b:c:ok
c :: mark:b:c:ok
proper :: mark:b:c:ok → mark:b:c:ok
ok :: mark:b:c:ok → mark:b:c:ok
top :: mark:b:c:ok → top
hole_mark:b:c:ok1_0 :: mark:b:c:ok
hole_top2_0 :: top
gen_mark:b:c:ok3_0 :: Nat → mark:b:c:ok
Lemmas:
g(gen_mark:b:c:ok3_0(+(1, n17_0))) → *4_0, rt ∈ Ω(n170)
Generator Equations:
gen_mark:b:c:ok3_0(0) ⇔ b
gen_mark:b:c:ok3_0(+(x, 1)) ⇔ mark(gen_mark:b:c:ok3_0(x))
The following defined symbols remain to be analysed:
top
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol top.
(19) Obligation:
TRS:
Rules:
active(
f(
X,
g(
X),
Y)) →
mark(
f(
Y,
Y,
Y))
active(
g(
b)) →
mark(
c)
active(
b) →
mark(
c)
active(
g(
X)) →
g(
active(
X))
g(
mark(
X)) →
mark(
g(
X))
proper(
f(
X1,
X2,
X3)) →
f(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
g(
X)) →
g(
proper(
X))
proper(
b) →
ok(
b)
proper(
c) →
ok(
c)
f(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
f(
X1,
X2,
X3))
g(
ok(
X)) →
ok(
g(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: mark:b:c:ok → mark:b:c:ok
f :: mark:b:c:ok → mark:b:c:ok → mark:b:c:ok → mark:b:c:ok
g :: mark:b:c:ok → mark:b:c:ok
mark :: mark:b:c:ok → mark:b:c:ok
b :: mark:b:c:ok
c :: mark:b:c:ok
proper :: mark:b:c:ok → mark:b:c:ok
ok :: mark:b:c:ok → mark:b:c:ok
top :: mark:b:c:ok → top
hole_mark:b:c:ok1_0 :: mark:b:c:ok
hole_top2_0 :: top
gen_mark:b:c:ok3_0 :: Nat → mark:b:c:ok
Lemmas:
g(gen_mark:b:c:ok3_0(+(1, n17_0))) → *4_0, rt ∈ Ω(n170)
Generator Equations:
gen_mark:b:c:ok3_0(0) ⇔ b
gen_mark:b:c:ok3_0(+(x, 1)) ⇔ mark(gen_mark:b:c:ok3_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_mark:b:c:ok3_0(+(1, n17_0))) → *4_0, rt ∈ Ω(n170)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
active(
f(
X,
g(
X),
Y)) →
mark(
f(
Y,
Y,
Y))
active(
g(
b)) →
mark(
c)
active(
b) →
mark(
c)
active(
g(
X)) →
g(
active(
X))
g(
mark(
X)) →
mark(
g(
X))
proper(
f(
X1,
X2,
X3)) →
f(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
g(
X)) →
g(
proper(
X))
proper(
b) →
ok(
b)
proper(
c) →
ok(
c)
f(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
f(
X1,
X2,
X3))
g(
ok(
X)) →
ok(
g(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: mark:b:c:ok → mark:b:c:ok
f :: mark:b:c:ok → mark:b:c:ok → mark:b:c:ok → mark:b:c:ok
g :: mark:b:c:ok → mark:b:c:ok
mark :: mark:b:c:ok → mark:b:c:ok
b :: mark:b:c:ok
c :: mark:b:c:ok
proper :: mark:b:c:ok → mark:b:c:ok
ok :: mark:b:c:ok → mark:b:c:ok
top :: mark:b:c:ok → top
hole_mark:b:c:ok1_0 :: mark:b:c:ok
hole_top2_0 :: top
gen_mark:b:c:ok3_0 :: Nat → mark:b:c:ok
Lemmas:
g(gen_mark:b:c:ok3_0(+(1, n17_0))) → *4_0, rt ∈ Ω(n170)
Generator Equations:
gen_mark:b:c:ok3_0(0) ⇔ b
gen_mark:b:c:ok3_0(+(x, 1)) ⇔ mark(gen_mark:b:c:ok3_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_mark:b:c:ok3_0(+(1, n17_0))) → *4_0, rt ∈ Ω(n170)
(24) BOUNDS(n^1, INF)