* Step 1: Bounds WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
a() -> n__a()
activate(X) -> X
activate(n__a()) -> a()
activate(n__f(X)) -> f(activate(X))
activate(n__g(X)) -> g(activate(X))
f(X) -> n__f(X)
f(f(a())) -> c(n__f(n__g(n__f(n__a()))))
g(X) -> n__g(X)
- Signature:
{a/0,activate/1,f/1,g/1} / {c/1,n__a/0,n__f/1,n__g/1}
- Obligation:
runtime complexity wrt. defined symbols {a,activate,f,g} and constructors {c,n__a,n__f,n__g}
+ Applied Processor:
Bounds {initialAutomaton = minimal, enrichment = match}
+ Details:
The problem is match-bounded by 2.
The enriched problem is compatible with follwoing automaton.
a_0() -> 1
a_1() -> 1
a_1() -> 3
activate_0(2) -> 1
activate_1(2) -> 3
c_0(2) -> 1
c_0(2) -> 2
c_0(2) -> 3
c_2(4) -> 1
c_2(4) -> 3
f_0(2) -> 1
f_1(3) -> 1
f_1(3) -> 3
g_0(2) -> 1
g_1(3) -> 1
g_1(3) -> 3
n__a_0() -> 1
n__a_0() -> 2
n__a_0() -> 3
n__a_1() -> 1
n__a_2() -> 1
n__a_2() -> 3
n__f_0(2) -> 1
n__f_0(2) -> 2
n__f_0(2) -> 3
n__f_1(2) -> 1
n__f_2(1) -> 6
n__f_2(3) -> 1
n__f_2(3) -> 3
n__f_2(5) -> 4
n__g_0(2) -> 1
n__g_0(2) -> 2
n__g_0(2) -> 3
n__g_1(2) -> 1
n__g_2(3) -> 1
n__g_2(3) -> 3
n__g_2(6) -> 5
2 -> 1
2 -> 3
* Step 2: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
a() -> n__a()
activate(X) -> X
activate(n__a()) -> a()
activate(n__f(X)) -> f(activate(X))
activate(n__g(X)) -> g(activate(X))
f(X) -> n__f(X)
f(f(a())) -> c(n__f(n__g(n__f(n__a()))))
g(X) -> n__g(X)
- Signature:
{a/0,activate/1,f/1,g/1} / {c/1,n__a/0,n__f/1,n__g/1}
- Obligation:
runtime complexity wrt. defined symbols {a,activate,f,g} and constructors {c,n__a,n__f,n__g}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
WORST_CASE(?,O(n^1))