(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

a__eq(0, 0) → true
a__eq(s(X), s(Y)) → a__eq(X, Y)
a__eq(X, Y) → false
a__inf(X) → cons(X, inf(s(X)))
a__take(0, X) → nil
a__take(s(X), cons(Y, L)) → cons(Y, take(X, L))
a__length(nil) → 0
a__length(cons(X, L)) → s(length(L))
mark(eq(X1, X2)) → a__eq(X1, X2)
mark(inf(X)) → a__inf(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(length(X)) → a__length(mark(X))
mark(0) → 0
mark(true) → true
mark(s(X)) → s(X)
mark(false) → false
mark(cons(X1, X2)) → cons(X1, X2)
mark(nil) → nil
a__eq(X1, X2) → eq(X1, X2)
a__inf(X) → inf(X)
a__take(X1, X2) → take(X1, X2)
a__length(X) → length(X)

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
mark(inf(X)) →+ cons(mark(X), inf(s(mark(X))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / inf(X)].
The result substitution is [ ].

The rewrite sequence
mark(inf(X)) →+ cons(mark(X), inf(s(mark(X))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0].
The pumping substitution is [X / inf(X)].
The result substitution is [ ].

(2) BOUNDS(2^n, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

a__eq(0', 0') → true
a__eq(s(X), s(Y)) → a__eq(X, Y)
a__eq(X, Y) → false
a__inf(X) → cons(X, inf(s(X)))
a__take(0', X) → nil
a__take(s(X), cons(Y, L)) → cons(Y, take(X, L))
a__length(nil) → 0'
a__length(cons(X, L)) → s(length(L))
mark(eq(X1, X2)) → a__eq(X1, X2)
mark(inf(X)) → a__inf(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(length(X)) → a__length(mark(X))
mark(0') → 0'
mark(true) → true
mark(s(X)) → s(X)
mark(false) → false
mark(cons(X1, X2)) → cons(X1, X2)
mark(nil) → nil
a__eq(X1, X2) → eq(X1, X2)
a__inf(X) → inf(X)
a__take(X1, X2) → take(X1, X2)
a__length(X) → length(X)

S is empty.
Rewrite Strategy: FULL

(5) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
cons/0

(6) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

a__eq(0', 0') → true
a__eq(s(X), s(Y)) → a__eq(X, Y)
a__eq(X, Y) → false
a__inf(X) → cons(inf(s(X)))
a__take(0', X) → nil
a__take(s(X), cons(L)) → cons(take(X, L))
a__length(nil) → 0'
a__length(cons(L)) → s(length(L))
mark(eq(X1, X2)) → a__eq(X1, X2)
mark(inf(X)) → a__inf(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(length(X)) → a__length(mark(X))
mark(0') → 0'
mark(true) → true
mark(s(X)) → s(X)
mark(false) → false
mark(cons(X2)) → cons(X2)
mark(nil) → nil
a__eq(X1, X2) → eq(X1, X2)
a__inf(X) → inf(X)
a__take(X1, X2) → take(X1, X2)
a__length(X) → length(X)

S is empty.
Rewrite Strategy: FULL

(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(8) Obligation:

TRS:
Rules:
a__eq(0', 0') → true
a__eq(s(X), s(Y)) → a__eq(X, Y)
a__eq(X, Y) → false
a__inf(X) → cons(inf(s(X)))
a__take(0', X) → nil
a__take(s(X), cons(L)) → cons(take(X, L))
a__length(nil) → 0'
a__length(cons(L)) → s(length(L))
mark(eq(X1, X2)) → a__eq(X1, X2)
mark(inf(X)) → a__inf(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(length(X)) → a__length(mark(X))
mark(0') → 0'
mark(true) → true
mark(s(X)) → s(X)
mark(false) → false
mark(cons(X2)) → cons(X2)
mark(nil) → nil
a__eq(X1, X2) → eq(X1, X2)
a__inf(X) → inf(X)
a__take(X1, X2) → take(X1, X2)
a__length(X) → length(X)

Types:
a__eq :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
0' :: 0':true:s:false:inf:cons:nil:take:length:eq
true :: 0':true:s:false:inf:cons:nil:take:length:eq
s :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
false :: 0':true:s:false:inf:cons:nil:take:length:eq
a__inf :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
cons :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
inf :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
a__take :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
nil :: 0':true:s:false:inf:cons:nil:take:length:eq
take :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
a__length :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
length :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
mark :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
eq :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
hole_0':true:s:false:inf:cons:nil:take:length:eq1_0 :: 0':true:s:false:inf:cons:nil:take:length:eq
gen_0':true:s:false:inf:cons:nil:take:length:eq2_0 :: Nat → 0':true:s:false:inf:cons:nil:take:length:eq

(9) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
a__eq, mark

They will be analysed ascendingly in the following order:
a__eq < mark

(10) Obligation:

TRS:
Rules:
a__eq(0', 0') → true
a__eq(s(X), s(Y)) → a__eq(X, Y)
a__eq(X, Y) → false
a__inf(X) → cons(inf(s(X)))
a__take(0', X) → nil
a__take(s(X), cons(L)) → cons(take(X, L))
a__length(nil) → 0'
a__length(cons(L)) → s(length(L))
mark(eq(X1, X2)) → a__eq(X1, X2)
mark(inf(X)) → a__inf(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(length(X)) → a__length(mark(X))
mark(0') → 0'
mark(true) → true
mark(s(X)) → s(X)
mark(false) → false
mark(cons(X2)) → cons(X2)
mark(nil) → nil
a__eq(X1, X2) → eq(X1, X2)
a__inf(X) → inf(X)
a__take(X1, X2) → take(X1, X2)
a__length(X) → length(X)

Types:
a__eq :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
0' :: 0':true:s:false:inf:cons:nil:take:length:eq
true :: 0':true:s:false:inf:cons:nil:take:length:eq
s :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
false :: 0':true:s:false:inf:cons:nil:take:length:eq
a__inf :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
cons :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
inf :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
a__take :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
nil :: 0':true:s:false:inf:cons:nil:take:length:eq
take :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
a__length :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
length :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
mark :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
eq :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
hole_0':true:s:false:inf:cons:nil:take:length:eq1_0 :: 0':true:s:false:inf:cons:nil:take:length:eq
gen_0':true:s:false:inf:cons:nil:take:length:eq2_0 :: Nat → 0':true:s:false:inf:cons:nil:take:length:eq

Generator Equations:
gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(0) ⇔ 0'
gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(+(x, 1)) ⇔ s(gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(x))

The following defined symbols remain to be analysed:
a__eq, mark

They will be analysed ascendingly in the following order:
a__eq < mark

(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
a__eq(gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(n4_0), gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(n4_0)) → true, rt ∈ Ω(1 + n40)

Induction Base:
a__eq(gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(0), gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(0)) →RΩ(1)
true

Induction Step:
a__eq(gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(+(n4_0, 1)), gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(+(n4_0, 1))) →RΩ(1)
a__eq(gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(n4_0), gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(n4_0)) →IH
true

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(12) Complex Obligation (BEST)

(13) Obligation:

TRS:
Rules:
a__eq(0', 0') → true
a__eq(s(X), s(Y)) → a__eq(X, Y)
a__eq(X, Y) → false
a__inf(X) → cons(inf(s(X)))
a__take(0', X) → nil
a__take(s(X), cons(L)) → cons(take(X, L))
a__length(nil) → 0'
a__length(cons(L)) → s(length(L))
mark(eq(X1, X2)) → a__eq(X1, X2)
mark(inf(X)) → a__inf(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(length(X)) → a__length(mark(X))
mark(0') → 0'
mark(true) → true
mark(s(X)) → s(X)
mark(false) → false
mark(cons(X2)) → cons(X2)
mark(nil) → nil
a__eq(X1, X2) → eq(X1, X2)
a__inf(X) → inf(X)
a__take(X1, X2) → take(X1, X2)
a__length(X) → length(X)

Types:
a__eq :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
0' :: 0':true:s:false:inf:cons:nil:take:length:eq
true :: 0':true:s:false:inf:cons:nil:take:length:eq
s :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
false :: 0':true:s:false:inf:cons:nil:take:length:eq
a__inf :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
cons :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
inf :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
a__take :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
nil :: 0':true:s:false:inf:cons:nil:take:length:eq
take :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
a__length :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
length :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
mark :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
eq :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
hole_0':true:s:false:inf:cons:nil:take:length:eq1_0 :: 0':true:s:false:inf:cons:nil:take:length:eq
gen_0':true:s:false:inf:cons:nil:take:length:eq2_0 :: Nat → 0':true:s:false:inf:cons:nil:take:length:eq

Lemmas:
a__eq(gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(n4_0), gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(n4_0)) → true, rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(0) ⇔ 0'
gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(+(x, 1)) ⇔ s(gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(x))

The following defined symbols remain to be analysed:
mark

(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol mark.

(15) Obligation:

TRS:
Rules:
a__eq(0', 0') → true
a__eq(s(X), s(Y)) → a__eq(X, Y)
a__eq(X, Y) → false
a__inf(X) → cons(inf(s(X)))
a__take(0', X) → nil
a__take(s(X), cons(L)) → cons(take(X, L))
a__length(nil) → 0'
a__length(cons(L)) → s(length(L))
mark(eq(X1, X2)) → a__eq(X1, X2)
mark(inf(X)) → a__inf(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(length(X)) → a__length(mark(X))
mark(0') → 0'
mark(true) → true
mark(s(X)) → s(X)
mark(false) → false
mark(cons(X2)) → cons(X2)
mark(nil) → nil
a__eq(X1, X2) → eq(X1, X2)
a__inf(X) → inf(X)
a__take(X1, X2) → take(X1, X2)
a__length(X) → length(X)

Types:
a__eq :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
0' :: 0':true:s:false:inf:cons:nil:take:length:eq
true :: 0':true:s:false:inf:cons:nil:take:length:eq
s :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
false :: 0':true:s:false:inf:cons:nil:take:length:eq
a__inf :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
cons :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
inf :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
a__take :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
nil :: 0':true:s:false:inf:cons:nil:take:length:eq
take :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
a__length :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
length :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
mark :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
eq :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
hole_0':true:s:false:inf:cons:nil:take:length:eq1_0 :: 0':true:s:false:inf:cons:nil:take:length:eq
gen_0':true:s:false:inf:cons:nil:take:length:eq2_0 :: Nat → 0':true:s:false:inf:cons:nil:take:length:eq

Lemmas:
a__eq(gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(n4_0), gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(n4_0)) → true, rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(0) ⇔ 0'
gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(+(x, 1)) ⇔ s(gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(x))

No more defined symbols left to analyse.

(16) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
a__eq(gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(n4_0), gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(n4_0)) → true, rt ∈ Ω(1 + n40)

(17) BOUNDS(n^1, INF)

(18) Obligation:

TRS:
Rules:
a__eq(0', 0') → true
a__eq(s(X), s(Y)) → a__eq(X, Y)
a__eq(X, Y) → false
a__inf(X) → cons(inf(s(X)))
a__take(0', X) → nil
a__take(s(X), cons(L)) → cons(take(X, L))
a__length(nil) → 0'
a__length(cons(L)) → s(length(L))
mark(eq(X1, X2)) → a__eq(X1, X2)
mark(inf(X)) → a__inf(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(length(X)) → a__length(mark(X))
mark(0') → 0'
mark(true) → true
mark(s(X)) → s(X)
mark(false) → false
mark(cons(X2)) → cons(X2)
mark(nil) → nil
a__eq(X1, X2) → eq(X1, X2)
a__inf(X) → inf(X)
a__take(X1, X2) → take(X1, X2)
a__length(X) → length(X)

Types:
a__eq :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
0' :: 0':true:s:false:inf:cons:nil:take:length:eq
true :: 0':true:s:false:inf:cons:nil:take:length:eq
s :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
false :: 0':true:s:false:inf:cons:nil:take:length:eq
a__inf :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
cons :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
inf :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
a__take :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
nil :: 0':true:s:false:inf:cons:nil:take:length:eq
take :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
a__length :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
length :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
mark :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
eq :: 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq → 0':true:s:false:inf:cons:nil:take:length:eq
hole_0':true:s:false:inf:cons:nil:take:length:eq1_0 :: 0':true:s:false:inf:cons:nil:take:length:eq
gen_0':true:s:false:inf:cons:nil:take:length:eq2_0 :: Nat → 0':true:s:false:inf:cons:nil:take:length:eq

Lemmas:
a__eq(gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(n4_0), gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(n4_0)) → true, rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(0) ⇔ 0'
gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(+(x, 1)) ⇔ s(gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(x))

No more defined symbols left to analyse.

(19) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
a__eq(gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(n4_0), gen_0':true:s:false:inf:cons:nil:take:length:eq2_0(n4_0)) → true, rt ∈ Ω(1 + n40)

(20) BOUNDS(n^1, INF)