0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 16 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 BOUNDS(1, 1)
f(n__f(n__a)) → f(n__g(f(n__a)))
f(X) → n__f(X)
a → n__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(X)
activate(X) → X
As the TRS is a non-duplicating overlay system, we have rc = irc.
f(n__f(n__a)) → f(n__g(f(n__a)))
f(X) → n__f(X)
a → n__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(X)
activate(X) → X
Tuples:
f(n__f(n__a)) → f(n__g(f(n__a)))
f(z0) → n__f(z0)
a → n__a
g(z0) → n__g(z0)
activate(n__f(z0)) → f(z0)
activate(n__a) → a
activate(n__g(z0)) → g(z0)
activate(z0) → z0
S tuples:
F(n__f(n__a)) → c(F(n__g(f(n__a))), F(n__a))
F(z0) → c1
A → c2
G(z0) → c3
ACTIVATE(n__f(z0)) → c4(F(z0))
ACTIVATE(n__a) → c5(A)
ACTIVATE(n__g(z0)) → c6(G(z0))
ACTIVATE(z0) → c7
K tuples:none
F(n__f(n__a)) → c(F(n__g(f(n__a))), F(n__a))
F(z0) → c1
A → c2
G(z0) → c3
ACTIVATE(n__f(z0)) → c4(F(z0))
ACTIVATE(n__a) → c5(A)
ACTIVATE(n__g(z0)) → c6(G(z0))
ACTIVATE(z0) → c7
f, a, g, activate
F, A, G, ACTIVATE
c, c1, c2, c3, c4, c5, c6, c7
ACTIVATE(n__g(z0)) → c6(G(z0))
F(n__f(n__a)) → c(F(n__g(f(n__a))), F(n__a))
G(z0) → c3
ACTIVATE(n__f(z0)) → c4(F(z0))
ACTIVATE(z0) → c7
A → c2
F(z0) → c1
ACTIVATE(n__a) → c5(A)
Tuples:none
f(n__f(n__a)) → f(n__g(f(n__a)))
f(z0) → n__f(z0)
a → n__a
g(z0) → n__g(z0)
activate(n__f(z0)) → f(z0)
activate(n__a) → a
activate(n__g(z0)) → g(z0)
activate(z0) → z0
f, a, g, activate