(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(n__f(n__a)) → f(n__g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(activate(X))
activate(X) → X
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
activate(n__g(X)) →+ g(activate(X))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / n__g(X)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(n__f(n__a)) → f(n__g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(activate(X))
activate(X) → X
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(n__f(n__a)) → f(n__g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(activate(X))
activate(X) → X
Types:
f :: n__a:n__f:n__g → n__a:n__f:n__g
n__f :: n__a:n__f:n__g → n__a:n__f:n__g
n__a :: n__a:n__f:n__g
n__g :: n__a:n__f:n__g → n__a:n__f:n__g
a :: n__a:n__f:n__g
g :: n__a:n__f:n__g → n__a:n__f:n__g
activate :: n__a:n__f:n__g → n__a:n__f:n__g
hole_n__a:n__f:n__g1_0 :: n__a:n__f:n__g
gen_n__a:n__f:n__g2_0 :: Nat → n__a:n__f:n__g
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
activateThey will be analysed ascendingly in the following order:
f < activate
(8) Obligation:
TRS:
Rules:
f(
n__f(
n__a)) →
f(
n__g(
n__f(
n__a)))
f(
X) →
n__f(
X)
a →
n__ag(
X) →
n__g(
X)
activate(
n__f(
X)) →
f(
X)
activate(
n__a) →
aactivate(
n__g(
X)) →
g(
activate(
X))
activate(
X) →
XTypes:
f :: n__a:n__f:n__g → n__a:n__f:n__g
n__f :: n__a:n__f:n__g → n__a:n__f:n__g
n__a :: n__a:n__f:n__g
n__g :: n__a:n__f:n__g → n__a:n__f:n__g
a :: n__a:n__f:n__g
g :: n__a:n__f:n__g → n__a:n__f:n__g
activate :: n__a:n__f:n__g → n__a:n__f:n__g
hole_n__a:n__f:n__g1_0 :: n__a:n__f:n__g
gen_n__a:n__f:n__g2_0 :: Nat → n__a:n__f:n__g
Generator Equations:
gen_n__a:n__f:n__g2_0(0) ⇔ n__a
gen_n__a:n__f:n__g2_0(+(x, 1)) ⇔ n__f(gen_n__a:n__f:n__g2_0(x))
The following defined symbols remain to be analysed:
f, activate
They will be analysed ascendingly in the following order:
f < activate
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(10) Obligation:
TRS:
Rules:
f(
n__f(
n__a)) →
f(
n__g(
n__f(
n__a)))
f(
X) →
n__f(
X)
a →
n__ag(
X) →
n__g(
X)
activate(
n__f(
X)) →
f(
X)
activate(
n__a) →
aactivate(
n__g(
X)) →
g(
activate(
X))
activate(
X) →
XTypes:
f :: n__a:n__f:n__g → n__a:n__f:n__g
n__f :: n__a:n__f:n__g → n__a:n__f:n__g
n__a :: n__a:n__f:n__g
n__g :: n__a:n__f:n__g → n__a:n__f:n__g
a :: n__a:n__f:n__g
g :: n__a:n__f:n__g → n__a:n__f:n__g
activate :: n__a:n__f:n__g → n__a:n__f:n__g
hole_n__a:n__f:n__g1_0 :: n__a:n__f:n__g
gen_n__a:n__f:n__g2_0 :: Nat → n__a:n__f:n__g
Generator Equations:
gen_n__a:n__f:n__g2_0(0) ⇔ n__a
gen_n__a:n__f:n__g2_0(+(x, 1)) ⇔ n__f(gen_n__a:n__f:n__g2_0(x))
The following defined symbols remain to be analysed:
activate
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol activate.
(12) Obligation:
TRS:
Rules:
f(
n__f(
n__a)) →
f(
n__g(
n__f(
n__a)))
f(
X) →
n__f(
X)
a →
n__ag(
X) →
n__g(
X)
activate(
n__f(
X)) →
f(
X)
activate(
n__a) →
aactivate(
n__g(
X)) →
g(
activate(
X))
activate(
X) →
XTypes:
f :: n__a:n__f:n__g → n__a:n__f:n__g
n__f :: n__a:n__f:n__g → n__a:n__f:n__g
n__a :: n__a:n__f:n__g
n__g :: n__a:n__f:n__g → n__a:n__f:n__g
a :: n__a:n__f:n__g
g :: n__a:n__f:n__g → n__a:n__f:n__g
activate :: n__a:n__f:n__g → n__a:n__f:n__g
hole_n__a:n__f:n__g1_0 :: n__a:n__f:n__g
gen_n__a:n__f:n__g2_0 :: Nat → n__a:n__f:n__g
Generator Equations:
gen_n__a:n__f:n__g2_0(0) ⇔ n__a
gen_n__a:n__f:n__g2_0(+(x, 1)) ⇔ n__f(gen_n__a:n__f:n__g2_0(x))
No more defined symbols left to analyse.