* Step 1: DependencyPairs WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: f(g(x),g(y)) -> f(p(f(g(x),s(y))),g(s(p(x)))) g(s(p(x))) -> p(x) p(0()) -> g(0()) - Signature: {f/2,g/1,p/1} / {0/0,s/1} - Obligation: runtime complexity wrt. defined symbols {f,g,p} and constructors {0,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following weak dependency pairs: Strict DPs f#(g(x),g(y)) -> c_1(f#(p(f(g(x),s(y))),g(s(p(x))))) g#(s(p(x))) -> c_2(p#(x)) p#(0()) -> c_3(g#(0())) Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(g(x),g(y)) -> c_1(f#(p(f(g(x),s(y))),g(s(p(x))))) g#(s(p(x))) -> c_2(p#(x)) p#(0()) -> c_3(g#(0())) - Strict TRS: f(g(x),g(y)) -> f(p(f(g(x),s(y))),g(s(p(x)))) g(s(p(x))) -> p(x) p(0()) -> g(0()) - Signature: {f/2,g/1,p/1,f#/2,g#/1,p#/1} / {0/0,s/1,c_1/1,c_2/1,c_3/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#,p#} and constructors {0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: p#(0()) -> c_3(g#(0())) * Step 3: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: p#(0()) -> c_3(g#(0())) - Signature: {f/2,g/1,p/1,f#/2,g#/1,p#/1} / {0/0,s/1,c_1/1,c_2/1,c_3/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#,p#} and constructors {0,s} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:p#(0()) -> c_3(g#(0())) The dependency graph contains no loops, we remove all dependency pairs. * Step 4: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {f/2,g/1,p/1,f#/2,g#/1,p#/1} / {0/0,s/1,c_1/1,c_2/1,c_3/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#,p#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))