0 CpxTRS
↳1 NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID), 15 ms)
↳2 CpxTRS
↳3 RcToIrcProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTRS
↳5 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtUsableRulesProof (⇔, 0 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 25 ms)
↳12 CdtProblem
↳13 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 BOUNDS(1, 1)
h(X, Z) → f(X, s(X), Z)
f(X, Y, g(X, Y)) → h(0, g(X, Y))
g(0, Y) → 0
g(X, s(Y)) → g(X, Y)
h(X, Z) → f(X, s(X), Z)
g(X, s(Y)) → g(X, Y)
g(0, Y) → 0
As the TRS does not nest defined symbols, we have rc = irc.
h(X, Z) → f(X, s(X), Z)
g(X, s(Y)) → g(X, Y)
g(0, Y) → 0
Tuples:
h(z0, z1) → f(z0, s(z0), z1)
g(z0, s(z1)) → g(z0, z1)
g(0, z0) → 0
S tuples:
H(z0, z1) → c
G(z0, s(z1)) → c1(G(z0, z1))
G(0, z0) → c2
K tuples:none
H(z0, z1) → c
G(z0, s(z1)) → c1(G(z0, z1))
G(0, z0) → c2
h, g
H, G
c, c1, c2
G(0, z0) → c2
H(z0, z1) → c
Tuples:
h(z0, z1) → f(z0, s(z0), z1)
g(z0, s(z1)) → g(z0, z1)
g(0, z0) → 0
S tuples:
G(z0, s(z1)) → c1(G(z0, z1))
K tuples:none
G(z0, s(z1)) → c1(G(z0, z1))
h, g
G
c1
h(z0, z1) → f(z0, s(z0), z1)
g(z0, s(z1)) → g(z0, z1)
g(0, z0) → 0
S tuples:
G(z0, s(z1)) → c1(G(z0, z1))
K tuples:none
G(z0, s(z1)) → c1(G(z0, z1))
G
c1
We considered the (Usable) Rules:none
G(z0, s(z1)) → c1(G(z0, z1))
The order we found is given by the following interpretation:
G(z0, s(z1)) → c1(G(z0, z1))
POL(G(x1, x2)) = x2
POL(c1(x1)) = x1
POL(s(x1)) = [1] + x1
S tuples:none
G(z0, s(z1)) → c1(G(z0, z1))
Defined Rule Symbols:none
G(z0, s(z1)) → c1(G(z0, z1))
G
c1