(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))

Rewrite Strategy: FULL

(1) InfiniteLowerBoundProof (EQUIVALENT transformation)

The loop following loop proves infinite runtime complexity:
The rewrite sequence
from(X) →+ cons(X, from(s(X)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [ ].
The result substitution is [X / s(X)].