0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 11 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtUsableRulesProof (⇔, 0 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 93 ms)
↳12 CdtProblem
↳13 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 15 ms)
↳14 CdtProblem
↳15 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 BOUNDS(1, 1)
minus(0, Y) → 0
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0) → true
geq(0, s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0, s(Y)) → 0
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) → X
if(false, X, Y) → Y
The duplicating contexts are:
div(s([]), s(Y))
div(s(X), s([]))
The defined contexts are:
if([], s(x1), 0)
if(x0, s([]), 0)
div([], s(x1))
geq([], x1)
minus([], x1)
[] just represents basic- or constructor-terms in the following defined contexts:
if([], s(x1), 0)
div([], s(x1))
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
minus(0, Y) → 0
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0) → true
geq(0, s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0, s(Y)) → 0
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) → X
if(false, X, Y) → Y
Tuples:
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
geq(z0, 0) → true
geq(0, s(z0)) → false
geq(s(z0), s(z1)) → geq(z0, z1)
div(0, s(z0)) → 0
div(s(z0), s(z1)) → if(geq(z0, z1), s(div(minus(z0, z1), s(z1))), 0)
if(true, z0, z1) → z0
if(false, z0, z1) → z1
S tuples:
MINUS(0, z0) → c
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(z0, 0) → c2
GEQ(0, s(z0)) → c3
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(0, s(z0)) → c5
DIV(s(z0), s(z1)) → c6(IF(geq(z0, z1), s(div(minus(z0, z1), s(z1))), 0), GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF(true, z0, z1) → c7
IF(false, z0, z1) → c8
K tuples:none
MINUS(0, z0) → c
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(z0, 0) → c2
GEQ(0, s(z0)) → c3
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(0, s(z0)) → c5
DIV(s(z0), s(z1)) → c6(IF(geq(z0, z1), s(div(minus(z0, z1), s(z1))), 0), GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF(true, z0, z1) → c7
IF(false, z0, z1) → c8
minus, geq, div, if
MINUS, GEQ, DIV, IF
c, c1, c2, c3, c4, c5, c6, c7, c8
IF(true, z0, z1) → c7
MINUS(0, z0) → c
IF(false, z0, z1) → c8
DIV(0, s(z0)) → c5
GEQ(0, s(z0)) → c3
GEQ(z0, 0) → c2
Tuples:
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
geq(z0, 0) → true
geq(0, s(z0)) → false
geq(s(z0), s(z1)) → geq(z0, z1)
div(0, s(z0)) → 0
div(s(z0), s(z1)) → if(geq(z0, z1), s(div(minus(z0, z1), s(z1))), 0)
if(true, z0, z1) → z0
if(false, z0, z1) → z1
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(s(z0), s(z1)) → c6(IF(geq(z0, z1), s(div(minus(z0, z1), s(z1))), 0), GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
K tuples:none
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(s(z0), s(z1)) → c6(IF(geq(z0, z1), s(div(minus(z0, z1), s(z1))), 0), GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
minus, geq, div, if
MINUS, GEQ, DIV
c1, c4, c6
Tuples:
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
geq(z0, 0) → true
geq(0, s(z0)) → false
geq(s(z0), s(z1)) → geq(z0, z1)
div(0, s(z0)) → 0
div(s(z0), s(z1)) → if(geq(z0, z1), s(div(minus(z0, z1), s(z1))), 0)
if(true, z0, z1) → z0
if(false, z0, z1) → z1
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
K tuples:none
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
minus, geq, div, if
MINUS, GEQ, DIV
c1, c4, c6
geq(z0, 0) → true
geq(0, s(z0)) → false
geq(s(z0), s(z1)) → geq(z0, z1)
div(0, s(z0)) → 0
div(s(z0), s(z1)) → if(geq(z0, z1), s(div(minus(z0, z1), s(z1))), 0)
if(true, z0, z1) → z0
if(false, z0, z1) → z1
Tuples:
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
K tuples:none
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
minus
MINUS, GEQ, DIV
c1, c4, c6
We considered the (Usable) Rules:
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
And the Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(0, z0) → 0
The order we found is given by the following interpretation:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
POL(0) = 0
POL(DIV(x1, x2)) = x1
POL(GEQ(x1, x2)) = 0
POL(MINUS(x1, x2)) = 0
POL(c1(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1, x2, x3)) = x1 + x2 + x3
POL(minus(x1, x2)) = 0
POL(s(x1)) = [1]
Tuples:
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
K tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
Defined Rule Symbols:
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
minus
MINUS, GEQ, DIV
c1, c4, c6
We considered the (Usable) Rules:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
And the Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(0, z0) → 0
The order we found is given by the following interpretation:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
POL(0) = 0
POL(DIV(x1, x2)) = [3]x1
POL(GEQ(x1, x2)) = x1
POL(MINUS(x1, x2)) = [2]x1
POL(c1(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1, x2, x3)) = x1 + x2 + x3
POL(minus(x1, x2)) = 0
POL(s(x1)) = [1] + x1
Tuples:
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
S tuples:none
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
Defined Rule Symbols:
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
minus
MINUS, GEQ, DIV
c1, c4, c6