### (0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

Rewrite Strategy: FULL

### (1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
sum(cons(s(n), x), cons(m, y)) →+ sum(cons(n, x), cons(s(m), y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [n / s(n)].
The result substitution is [m / s(m)].

### (3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

### (4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0', x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0', x)))
weight(cons(n, nil)) → n

S is empty.
Rewrite Strategy: FULL

Infered types.

### (6) Obligation:

TRS:
Rules:
sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0', x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0', x)))
weight(cons(n, nil)) → n

Types:
sum :: cons:nil → cons:nil → cons:nil
cons :: s:0' → cons:nil → cons:nil
s :: s:0' → s:0'
0' :: s:0'
nil :: cons:nil
weight :: cons:nil → s:0'
hole_cons:nil1_0 :: cons:nil
hole_s:0'2_0 :: s:0'
gen_cons:nil3_0 :: Nat → cons:nil
gen_s:0'4_0 :: Nat → s:0'

### (7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
sum, weight

They will be analysed ascendingly in the following order:
sum < weight

### (8) Obligation:

TRS:
Rules:
sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0', x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0', x)))
weight(cons(n, nil)) → n

Types:
sum :: cons:nil → cons:nil → cons:nil
cons :: s:0' → cons:nil → cons:nil
s :: s:0' → s:0'
0' :: s:0'
nil :: cons:nil
weight :: cons:nil → s:0'
hole_cons:nil1_0 :: cons:nil
hole_s:0'2_0 :: s:0'
gen_cons:nil3_0 :: Nat → cons:nil
gen_s:0'4_0 :: Nat → s:0'

Generator Equations:
gen_cons:nil3_0(0) ⇔ nil
gen_cons:nil3_0(+(x, 1)) ⇔ cons(0', gen_cons:nil3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))

The following defined symbols remain to be analysed:
sum, weight

They will be analysed ascendingly in the following order:
sum < weight

### (9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
sum(gen_cons:nil3_0(n6_0), gen_cons:nil3_0(b)) → gen_cons:nil3_0(b), rt ∈ Ω(1 + n60)

Induction Base:
sum(gen_cons:nil3_0(0), gen_cons:nil3_0(b)) →RΩ(1)
gen_cons:nil3_0(b)

Induction Step:
sum(gen_cons:nil3_0(+(n6_0, 1)), gen_cons:nil3_0(b)) →RΩ(1)
sum(gen_cons:nil3_0(n6_0), gen_cons:nil3_0(b)) →IH
gen_cons:nil3_0(b)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (11) Obligation:

TRS:
Rules:
sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0', x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0', x)))
weight(cons(n, nil)) → n

Types:
sum :: cons:nil → cons:nil → cons:nil
cons :: s:0' → cons:nil → cons:nil
s :: s:0' → s:0'
0' :: s:0'
nil :: cons:nil
weight :: cons:nil → s:0'
hole_cons:nil1_0 :: cons:nil
hole_s:0'2_0 :: s:0'
gen_cons:nil3_0 :: Nat → cons:nil
gen_s:0'4_0 :: Nat → s:0'

Lemmas:
sum(gen_cons:nil3_0(n6_0), gen_cons:nil3_0(b)) → gen_cons:nil3_0(b), rt ∈ Ω(1 + n60)

Generator Equations:
gen_cons:nil3_0(0) ⇔ nil
gen_cons:nil3_0(+(x, 1)) ⇔ cons(0', gen_cons:nil3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))

The following defined symbols remain to be analysed:
weight

### (12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
weight(gen_cons:nil3_0(+(1, n535_0))) → gen_s:0'4_0(0), rt ∈ Ω(1 + n5350 + n53502)

Induction Base:
weight(gen_cons:nil3_0(+(1, 0))) →RΩ(1)
0'

Induction Step:
weight(gen_cons:nil3_0(+(1, +(n535_0, 1)))) →RΩ(1)
weight(sum(cons(0', cons(0', gen_cons:nil3_0(n535_0))), cons(0', gen_cons:nil3_0(n535_0)))) →LΩ(3 + n5350)
weight(gen_cons:nil3_0(+(n535_0, 1))) →IH
gen_s:0'4_0(0)

We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).

### (14) Obligation:

TRS:
Rules:
sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0', x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0', x)))
weight(cons(n, nil)) → n

Types:
sum :: cons:nil → cons:nil → cons:nil
cons :: s:0' → cons:nil → cons:nil
s :: s:0' → s:0'
0' :: s:0'
nil :: cons:nil
weight :: cons:nil → s:0'
hole_cons:nil1_0 :: cons:nil
hole_s:0'2_0 :: s:0'
gen_cons:nil3_0 :: Nat → cons:nil
gen_s:0'4_0 :: Nat → s:0'

Lemmas:
sum(gen_cons:nil3_0(n6_0), gen_cons:nil3_0(b)) → gen_cons:nil3_0(b), rt ∈ Ω(1 + n60)
weight(gen_cons:nil3_0(+(1, n535_0))) → gen_s:0'4_0(0), rt ∈ Ω(1 + n5350 + n53502)

Generator Equations:
gen_cons:nil3_0(0) ⇔ nil
gen_cons:nil3_0(+(x, 1)) ⇔ cons(0', gen_cons:nil3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))

No more defined symbols left to analyse.

### (15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
weight(gen_cons:nil3_0(+(1, n535_0))) → gen_s:0'4_0(0), rt ∈ Ω(1 + n5350 + n53502)

### (17) Obligation:

TRS:
Rules:
sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0', x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0', x)))
weight(cons(n, nil)) → n

Types:
sum :: cons:nil → cons:nil → cons:nil
cons :: s:0' → cons:nil → cons:nil
s :: s:0' → s:0'
0' :: s:0'
nil :: cons:nil
weight :: cons:nil → s:0'
hole_cons:nil1_0 :: cons:nil
hole_s:0'2_0 :: s:0'
gen_cons:nil3_0 :: Nat → cons:nil
gen_s:0'4_0 :: Nat → s:0'

Lemmas:
sum(gen_cons:nil3_0(n6_0), gen_cons:nil3_0(b)) → gen_cons:nil3_0(b), rt ∈ Ω(1 + n60)
weight(gen_cons:nil3_0(+(1, n535_0))) → gen_s:0'4_0(0), rt ∈ Ω(1 + n5350 + n53502)

Generator Equations:
gen_cons:nil3_0(0) ⇔ nil
gen_cons:nil3_0(+(x, 1)) ⇔ cons(0', gen_cons:nil3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))

No more defined symbols left to analyse.

### (18) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
weight(gen_cons:nil3_0(+(1, n535_0))) → gen_s:0'4_0(0), rt ∈ Ω(1 + n5350 + n53502)

### (20) Obligation:

TRS:
Rules:
sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0', x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0', x)))
weight(cons(n, nil)) → n

Types:
sum :: cons:nil → cons:nil → cons:nil
cons :: s:0' → cons:nil → cons:nil
s :: s:0' → s:0'
0' :: s:0'
nil :: cons:nil
weight :: cons:nil → s:0'
hole_cons:nil1_0 :: cons:nil
hole_s:0'2_0 :: s:0'
gen_cons:nil3_0 :: Nat → cons:nil
gen_s:0'4_0 :: Nat → s:0'

Lemmas:
sum(gen_cons:nil3_0(n6_0), gen_cons:nil3_0(b)) → gen_cons:nil3_0(b), rt ∈ Ω(1 + n60)

Generator Equations:
gen_cons:nil3_0(0) ⇔ nil
gen_cons:nil3_0(+(x, 1)) ⇔ cons(0', gen_cons:nil3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))

No more defined symbols left to analyse.

### (21) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
sum(gen_cons:nil3_0(n6_0), gen_cons:nil3_0(b)) → gen_cons:nil3_0(b), rt ∈ Ω(1 + n60)