0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtUsableRulesProof (⇔, 6 ms)
↳8 CdtProblem
↳9 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 102 ms)
↳10 CdtProblem
↳11 CdtNarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CdtProblem
↳13 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 3 ms)
↳14 CdtProblem
↳15 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 31 ms)
↳16 CdtProblem
↳17 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳18 BOUNDS(1, 1)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(s(x), s(y)), s(y)))
The duplicating contexts are:
quot(s(x), s([]))
The defined contexts are:
quot([], s(x1))
minus(s([]), s(x1))
minus([], x1)
[] just represents basic- or constructor-terms in the following defined contexts:
quot([], s(x1))
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(s(x), s(y)), s(y)))
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(s(z0), s(z1)), s(z1)))
S tuples:
MINUS(z0, 0) → c
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(0, z0) → c2
LE(s(z0), 0) → c3
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(0, s(z0)) → c5
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
K tuples:none
MINUS(z0, 0) → c
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(0, z0) → c2
LE(s(z0), 0) → c3
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(0, s(z0)) → c5
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
minus, le, quot
MINUS, LE, QUOT
c, c1, c2, c3, c4, c5, c6
MINUS(z0, 0) → c
LE(s(z0), 0) → c3
LE(0, z0) → c2
QUOT(0, s(z0)) → c5
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(s(z0), s(z1)), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
K tuples:none
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
minus, le, quot
MINUS, LE, QUOT
c1, c4, c6
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(s(z0), s(z1)), s(z1)))
Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
K tuples:none
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
minus
MINUS, LE, QUOT
c1, c4, c6
We considered the (Usable) Rules:none
LE(s(z0), s(z1)) → c4(LE(z0, z1))
The order we found is given by the following interpretation:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
POL(0) = 0
POL(LE(x1, x2)) = x1
POL(MINUS(x1, x2)) = 0
POL(QUOT(x1, x2)) = 0
POL(c1(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(minus(x1, x2)) = 0
POL(s(x1)) = [1] + x1
Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
K tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
Defined Rule Symbols:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
minus
MINUS, LE, QUOT
c1, c4, c6
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
K tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
Defined Rule Symbols:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
minus
MINUS, LE, QUOT
c1, c4, c6
We considered the (Usable) Rules:
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
And the Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
The order we found is given by the following interpretation:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
POL(0) = 0
POL(LE(x1, x2)) = [2]x2
POL(MINUS(x1, x2)) = 0
POL(QUOT(x1, x2)) = x1
POL(c1(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
K tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
Defined Rule Symbols:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
minus
MINUS, LE, QUOT
c1, c4, c6
We considered the (Usable) Rules:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
And the Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
The order we found is given by the following interpretation:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
POL(0) = 0
POL(LE(x1, x2)) = x22 + [2]x1·x2
POL(MINUS(x1, x2)) = [2]x1
POL(QUOT(x1, x2)) = x12
POL(c1(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(minus(x1, x2)) = x1
POL(s(x1)) = [2] + x1
Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
S tuples:none
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
Defined Rule Symbols:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
minus
MINUS, LE, QUOT
c1, c4, c6