0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 15 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 11 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtUsableRulesProof (⇔, 0 ms)
↳8 CdtProblem
↳9 CdtNarrowingProof (BOTH BOUNDS(ID, ID), 7 ms)
↳10 CdtProblem
↳11 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CdtProblem
↳13 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 23 ms)
↳14 CdtProblem
↳15 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 46 ms)
↳16 CdtProblem
↳17 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳18 BOUNDS(1, 1)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
bits(0) → 0
bits(s(x)) → s(bits(half(s(x))))
As the TRS is a non-duplicating overlay system, we have rc = irc.
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
bits(0) → 0
bits(s(x)) → s(bits(half(s(x))))
Tuples:
half(0) → 0
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
bits(0) → 0
bits(s(z0)) → s(bits(half(s(z0))))
S tuples:
HALF(0) → c
HALF(s(0)) → c1
HALF(s(s(z0))) → c2(HALF(z0))
BITS(0) → c3
BITS(s(z0)) → c4(BITS(half(s(z0))), HALF(s(z0)))
K tuples:none
HALF(0) → c
HALF(s(0)) → c1
HALF(s(s(z0))) → c2(HALF(z0))
BITS(0) → c3
BITS(s(z0)) → c4(BITS(half(s(z0))), HALF(s(z0)))
half, bits
HALF, BITS
c, c1, c2, c3, c4
HALF(0) → c
HALF(s(0)) → c1
BITS(0) → c3
Tuples:
half(0) → 0
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
bits(0) → 0
bits(s(z0)) → s(bits(half(s(z0))))
S tuples:
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(z0)) → c4(BITS(half(s(z0))), HALF(s(z0)))
K tuples:none
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(z0)) → c4(BITS(half(s(z0))), HALF(s(z0)))
half, bits
HALF, BITS
c2, c4
bits(0) → 0
bits(s(z0)) → s(bits(half(s(z0))))
Tuples:
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
half(0) → 0
S tuples:
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(z0)) → c4(BITS(half(s(z0))), HALF(s(z0)))
K tuples:none
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(z0)) → c4(BITS(half(s(z0))), HALF(s(z0)))
half
HALF, BITS
c2, c4
BITS(s(0)) → c4(BITS(0), HALF(s(0)))
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
Tuples:
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
half(0) → 0
S tuples:
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(0)) → c4(BITS(0), HALF(s(0)))
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
K tuples:none
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(0)) → c4(BITS(0), HALF(s(0)))
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
half
HALF, BITS
c2, c4
BITS(s(0)) → c4(BITS(0), HALF(s(0)))
Tuples:
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
half(0) → 0
S tuples:
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
K tuples:none
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
half
HALF, BITS
c2, c4
We considered the (Usable) Rules:
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
And the Tuples:
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
half(0) → 0
The order we found is given by the following interpretation:
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
POL(0) = [1]
POL(BITS(x1)) = x1
POL(HALF(x1)) = 0
POL(c2(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(half(x1)) = [1] + x1
POL(s(x1)) = [2] + x1
Tuples:
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
half(0) → 0
S tuples:
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
K tuples:
HALF(s(s(z0))) → c2(HALF(z0))
Defined Rule Symbols:
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
half
HALF, BITS
c2, c4
We considered the (Usable) Rules:
HALF(s(s(z0))) → c2(HALF(z0))
And the Tuples:
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
half(0) → 0
The order we found is given by the following interpretation:
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
POL(0) = 0
POL(BITS(x1)) = x12
POL(HALF(x1)) = [1] + x1
POL(c2(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(half(x1)) = x1
POL(s(x1)) = [1] + x1
Tuples:
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
half(0) → 0
S tuples:none
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
Defined Rule Symbols:
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
HALF(s(s(z0))) → c2(HALF(z0))
half
HALF, BITS
c2, c4