0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 14 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtUsableRulesProof (⇔, 0 ms)
↳10 CdtProblem
↳11 CdtNarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CdtProblem
↳13 CdtUsableRulesProof (⇔, 0 ms)
↳14 CdtProblem
↳15 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 0 ms)
↳16 CdtProblem
↳17 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 0 ms)
↳18 CdtProblem
↳19 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳20 BOUNDS(1, 1)
p(0) → 0
p(s(x)) → x
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(x, s(y)) → if(le(x, s(y)), 0, p(minus(x, p(s(y)))))
if(true, x, y) → x
if(false, x, y) → y
The duplicating contexts are:
minus([], s(y))
minus(x, s([]))
The defined contexts are:
if([], 0, x1)
if(x0, 0, [])
p([])
minus(x0, [])
le(x0, s([]))
p(s([]))
le(x0, [])
[] just represents basic- or constructor-terms in the following defined contexts:
if([], 0, x1)
minus(x0, [])
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
p(0) → 0
p(s(x)) → x
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(x, s(y)) → if(le(x, s(y)), 0, p(minus(x, p(s(y)))))
if(true, x, y) → x
if(false, x, y) → y
Tuples:
p(0) → 0
p(s(z0)) → z0
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(z0, s(z1)) → if(le(z0, s(z1)), 0, p(minus(z0, p(s(z1)))))
if(true, z0, z1) → z0
if(false, z0, z1) → z1
S tuples:
P(0) → c
P(s(z0)) → c1
LE(0, z0) → c2
LE(s(z0), 0) → c3
LE(s(z0), s(z1)) → c4(LE(z0, z1))
MINUS(z0, 0) → c5
MINUS(z0, s(z1)) → c6(IF(le(z0, s(z1)), 0, p(minus(z0, p(s(z1))))), LE(z0, s(z1)), P(minus(z0, p(s(z1)))), MINUS(z0, p(s(z1))), P(s(z1)))
IF(true, z0, z1) → c7
IF(false, z0, z1) → c8
K tuples:none
P(0) → c
P(s(z0)) → c1
LE(0, z0) → c2
LE(s(z0), 0) → c3
LE(s(z0), s(z1)) → c4(LE(z0, z1))
MINUS(z0, 0) → c5
MINUS(z0, s(z1)) → c6(IF(le(z0, s(z1)), 0, p(minus(z0, p(s(z1))))), LE(z0, s(z1)), P(minus(z0, p(s(z1)))), MINUS(z0, p(s(z1))), P(s(z1)))
IF(true, z0, z1) → c7
IF(false, z0, z1) → c8
p, le, minus, if
P, LE, MINUS, IF
c, c1, c2, c3, c4, c5, c6, c7, c8
P(0) → c
LE(s(z0), 0) → c3
IF(true, z0, z1) → c7
LE(0, z0) → c2
P(s(z0)) → c1
MINUS(z0, 0) → c5
IF(false, z0, z1) → c8
Tuples:
p(0) → 0
p(s(z0)) → z0
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(z0, s(z1)) → if(le(z0, s(z1)), 0, p(minus(z0, p(s(z1)))))
if(true, z0, z1) → z0
if(false, z0, z1) → z1
S tuples:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
MINUS(z0, s(z1)) → c6(IF(le(z0, s(z1)), 0, p(minus(z0, p(s(z1))))), LE(z0, s(z1)), P(minus(z0, p(s(z1)))), MINUS(z0, p(s(z1))), P(s(z1)))
K tuples:none
LE(s(z0), s(z1)) → c4(LE(z0, z1))
MINUS(z0, s(z1)) → c6(IF(le(z0, s(z1)), 0, p(minus(z0, p(s(z1))))), LE(z0, s(z1)), P(minus(z0, p(s(z1)))), MINUS(z0, p(s(z1))), P(s(z1)))
p, le, minus, if
LE, MINUS
c4, c6
Tuples:
p(0) → 0
p(s(z0)) → z0
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(z0, s(z1)) → if(le(z0, s(z1)), 0, p(minus(z0, p(s(z1)))))
if(true, z0, z1) → z0
if(false, z0, z1) → z1
S tuples:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
MINUS(z0, s(z1)) → c6(LE(z0, s(z1)), MINUS(z0, p(s(z1))))
K tuples:none
LE(s(z0), s(z1)) → c4(LE(z0, z1))
MINUS(z0, s(z1)) → c6(LE(z0, s(z1)), MINUS(z0, p(s(z1))))
p, le, minus, if
LE, MINUS
c4, c6
p(0) → 0
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(z0, s(z1)) → if(le(z0, s(z1)), 0, p(minus(z0, p(s(z1)))))
if(true, z0, z1) → z0
if(false, z0, z1) → z1
Tuples:
p(s(z0)) → z0
S tuples:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
MINUS(z0, s(z1)) → c6(LE(z0, s(z1)), MINUS(z0, p(s(z1))))
K tuples:none
LE(s(z0), s(z1)) → c4(LE(z0, z1))
MINUS(z0, s(z1)) → c6(LE(z0, s(z1)), MINUS(z0, p(s(z1))))
p
LE, MINUS
c4, c6
MINUS(x0, s(z0)) → c6(LE(x0, s(z0)), MINUS(x0, z0))
Tuples:
p(s(z0)) → z0
S tuples:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
MINUS(x0, s(z0)) → c6(LE(x0, s(z0)), MINUS(x0, z0))
K tuples:none
LE(s(z0), s(z1)) → c4(LE(z0, z1))
MINUS(x0, s(z0)) → c6(LE(x0, s(z0)), MINUS(x0, z0))
p
LE, MINUS
c4, c6
p(s(z0)) → z0
S tuples:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
MINUS(x0, s(z0)) → c6(LE(x0, s(z0)), MINUS(x0, z0))
K tuples:none
LE(s(z0), s(z1)) → c4(LE(z0, z1))
MINUS(x0, s(z0)) → c6(LE(x0, s(z0)), MINUS(x0, z0))
LE, MINUS
c4, c6
We considered the (Usable) Rules:none
MINUS(x0, s(z0)) → c6(LE(x0, s(z0)), MINUS(x0, z0))
The order we found is given by the following interpretation:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
MINUS(x0, s(z0)) → c6(LE(x0, s(z0)), MINUS(x0, z0))
POL(LE(x1, x2)) = 0
POL(MINUS(x1, x2)) = x2
POL(c4(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(s(x1)) = [1] + x1
S tuples:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
MINUS(x0, s(z0)) → c6(LE(x0, s(z0)), MINUS(x0, z0))
K tuples:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
Defined Rule Symbols:none
MINUS(x0, s(z0)) → c6(LE(x0, s(z0)), MINUS(x0, z0))
LE, MINUS
c4, c6
We considered the (Usable) Rules:none
LE(s(z0), s(z1)) → c4(LE(z0, z1))
The order we found is given by the following interpretation:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
MINUS(x0, s(z0)) → c6(LE(x0, s(z0)), MINUS(x0, z0))
POL(LE(x1, x2)) = x1
POL(MINUS(x1, x2)) = x1·x2
POL(c4(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(s(x1)) = [2] + x1
S tuples:none
LE(s(z0), s(z1)) → c4(LE(z0, z1))
MINUS(x0, s(z0)) → c6(LE(x0, s(z0)), MINUS(x0, z0))
Defined Rule Symbols:none
MINUS(x0, s(z0)) → c6(LE(x0, s(z0)), MINUS(x0, z0))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
LE, MINUS
c4, c6