0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 14 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtUsableRulesProof (⇔, 0 ms)
↳10 CdtProblem
↳11 CdtNarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CdtProblem
↳13 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CdtProblem
↳15 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 BOUNDS(1, 1)
f(x, x) → f(g(x), x)
g(x) → s(x)
As the TRS is a non-duplicating overlay system, we have rc = irc.
f(x, x) → f(g(x), x)
g(x) → s(x)
Tuples:
f(z0, z0) → f(g(z0), z0)
g(z0) → s(z0)
S tuples:
F(z0, z0) → c(F(g(z0), z0), G(z0))
G(z0) → c1
K tuples:none
F(z0, z0) → c(F(g(z0), z0), G(z0))
G(z0) → c1
f, g
F, G
c, c1
G(z0) → c1
Tuples:
f(z0, z0) → f(g(z0), z0)
g(z0) → s(z0)
S tuples:
F(z0, z0) → c(F(g(z0), z0), G(z0))
K tuples:none
F(z0, z0) → c(F(g(z0), z0), G(z0))
f, g
F
c
Tuples:
f(z0, z0) → f(g(z0), z0)
g(z0) → s(z0)
S tuples:
F(z0, z0) → c(F(g(z0), z0))
K tuples:none
F(z0, z0) → c(F(g(z0), z0))
f, g
F
c
f(z0, z0) → f(g(z0), z0)
Tuples:
g(z0) → s(z0)
S tuples:
F(z0, z0) → c(F(g(z0), z0))
K tuples:none
F(z0, z0) → c(F(g(z0), z0))
g
F
c
F(z0, z0) → c(F(s(z0), z0))
Tuples:
g(z0) → s(z0)
S tuples:
F(z0, z0) → c(F(s(z0), z0))
K tuples:none
F(z0, z0) → c(F(s(z0), z0))
g
F
c
F(z0, z0) → c(F(s(z0), z0))
Tuples:none
g(z0) → s(z0)
g