(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(x, c(x), c(y)) → f(y, y, f(y, x, y))
f(s(x), y, z) → f(x, s(c(y)), c(z))
f(c(x), x, y) → c(y)
g(x, y) → x
g(x, y) → y
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(s(x), y, z) →+ f(x, s(c(y)), c(z))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x)].
The result substitution is [y / s(c(y)), z / c(z)].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(x, c(x), c(y)) → f(y, y, f(y, x, y))
f(s(x), y, z) → f(x, s(c(y)), c(z))
f(c(x), x, y) → c(y)
g(x, y) → x
g(x, y) → y
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(x, c(x), c(y)) → f(y, y, f(y, x, y))
f(s(x), y, z) → f(x, s(c(y)), c(z))
f(c(x), x, y) → c(y)
g(x, y) → x
g(x, y) → y
Types:
f :: c:s → c:s → c:s → c:s
c :: c:s → c:s
s :: c:s → c:s
g :: g → g → g
hole_c:s1_0 :: c:s
hole_g2_0 :: g
gen_c:s3_0 :: Nat → c:s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(8) Obligation:
TRS:
Rules:
f(
x,
c(
x),
c(
y)) →
f(
y,
y,
f(
y,
x,
y))
f(
s(
x),
y,
z) →
f(
x,
s(
c(
y)),
c(
z))
f(
c(
x),
x,
y) →
c(
y)
g(
x,
y) →
xg(
x,
y) →
yTypes:
f :: c:s → c:s → c:s → c:s
c :: c:s → c:s
s :: c:s → c:s
g :: g → g → g
hole_c:s1_0 :: c:s
hole_g2_0 :: g
gen_c:s3_0 :: Nat → c:s
Generator Equations:
gen_c:s3_0(0) ⇔ hole_c:s1_0
gen_c:s3_0(+(x, 1)) ⇔ c(gen_c:s3_0(x))
The following defined symbols remain to be analysed:
f
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(10) Obligation:
TRS:
Rules:
f(
x,
c(
x),
c(
y)) →
f(
y,
y,
f(
y,
x,
y))
f(
s(
x),
y,
z) →
f(
x,
s(
c(
y)),
c(
z))
f(
c(
x),
x,
y) →
c(
y)
g(
x,
y) →
xg(
x,
y) →
yTypes:
f :: c:s → c:s → c:s → c:s
c :: c:s → c:s
s :: c:s → c:s
g :: g → g → g
hole_c:s1_0 :: c:s
hole_g2_0 :: g
gen_c:s3_0 :: Nat → c:s
Generator Equations:
gen_c:s3_0(0) ⇔ hole_c:s1_0
gen_c:s3_0(+(x, 1)) ⇔ c(gen_c:s3_0(x))
No more defined symbols left to analyse.