### (0) Obligation:

The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1).

The TRS R consists of the following rules:

f(s(0), g(x)) → f(x, g(x))
g(s(x)) → g(x)

Rewrite Strategy: FULL

### (1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)

The TRS does not nest defined symbols.
Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
f(s(0), g(x)) → f(x, g(x))

### (2) Obligation:

The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1).

The TRS R consists of the following rules:

g(s(x)) → g(x)

Rewrite Strategy: FULL

### (3) RcToIrcProof (BOTH BOUNDS(ID, ID) transformation)

Converted rc-obligation to irc-obligation.

As the TRS does not nest defined symbols, we have rc = irc.

### (4) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).

The TRS R consists of the following rules:

g(s(x)) → g(x)

Rewrite Strategy: INNERMOST

### (5) CpxTrsMatchBoundsProof (EQUIVALENT transformation)

A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 1.
The certificate found is represented by the following graph.
Start state: 3
Accept states: [4]
Transitions:
3→4[g_1|0, g_1|1]
4→4[s_1|0]