(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
prod(xs) → prodIter(xs, s(0))
prodIter(xs, x) → ifProd(isempty(xs), xs, x)
ifProd(true, xs, x) → x
ifProd(false, xs, x) → prodIter(tail(xs), times(x, head(xs)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(x, y) → timesIter(x, y, 0, 0)
timesIter(x, y, z, u) → ifTimes(ge(u, x), x, y, z, u)
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, plus(y, z), s(u))
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
tail(nil) → nil
tail(cons(x, xs)) → xs
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
a → b
a → c
Rewrite Strategy: FULL
 
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
prodIter(cons(x47455_1, xs47456_1), x) →+ prodIter(xs47456_1, times(x, head(cons(x47455_1, xs47456_1))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [xs47456_1 / cons(x47455_1, xs47456_1)].
The result substitution is [x / times(x, head(cons(x47455_1, xs47456_1)))].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
prod(xs) → prodIter(xs, s(0'))
prodIter(xs, x) → ifProd(isempty(xs), xs, x)
ifProd(true, xs, x) → x
ifProd(false, xs, x) → prodIter(tail(xs), times(x, head(xs)))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
times(x, y) → timesIter(x, y, 0', 0')
timesIter(x, y, z, u) → ifTimes(ge(u, x), x, y, z, u)
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, plus(y, z), s(u))
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
tail(nil) → nil
tail(cons(x, xs)) → xs
ge(x, 0') → true
ge(0', s(y)) → false
ge(s(x), s(y)) → ge(x, y)
a → b
a → c
S is empty.
Rewrite Strategy: FULL
 
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
prod(xs) → prodIter(xs, s(0'))
prodIter(xs, x) → ifProd(isempty(xs), xs, x)
ifProd(true, xs, x) → x
ifProd(false, xs, x) → prodIter(tail(xs), times(x, head(xs)))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
times(x, y) → timesIter(x, y, 0', 0')
timesIter(x, y, z, u) → ifTimes(ge(u, x), x, y, z, u)
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, plus(y, z), s(u))
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
tail(nil) → nil
tail(cons(x, xs)) → xs
ge(x, 0') → true
ge(0', s(y)) → false
ge(s(x), s(y)) → ge(x, y)
a → b
a → c
Types:
prod :: nil:cons → 0':s:error
prodIter :: nil:cons → 0':s:error → 0':s:error
s :: 0':s:error → 0':s:error
0' :: 0':s:error
ifProd :: true:false → nil:cons → 0':s:error → 0':s:error
isempty :: nil:cons → true:false
true :: true:false
false :: true:false
tail :: nil:cons → nil:cons
times :: 0':s:error → 0':s:error → 0':s:error
head :: nil:cons → 0':s:error
plus :: 0':s:error → 0':s:error → 0':s:error
timesIter :: 0':s:error → 0':s:error → 0':s:error → 0':s:error → 0':s:error
ifTimes :: true:false → 0':s:error → 0':s:error → 0':s:error → 0':s:error → 0':s:error
ge :: 0':s:error → 0':s:error → true:false
nil :: nil:cons
cons :: 0':s:error → nil:cons → nil:cons
error :: 0':s:error
a :: b:c
b :: b:c
c :: b:c
hole_0':s:error1_0 :: 0':s:error
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
hole_b:c4_0 :: b:c
gen_0':s:error5_0 :: Nat → 0':s:error
gen_nil:cons6_0 :: Nat → nil:cons
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
prodIter, 
plus, 
timesIter, 
geThey will be analysed ascendingly in the following order:
plus < timesIter
ge < timesIter
 
(8) Obligation:
TRS:
Rules:
prod(
xs) → 
prodIter(
xs, 
s(
0'))
prodIter(
xs, 
x) → 
ifProd(
isempty(
xs), 
xs, 
x)
ifProd(
true, 
xs, 
x) → 
xifProd(
false, 
xs, 
x) → 
prodIter(
tail(
xs), 
times(
x, 
head(
xs)))
plus(
0', 
y) → 
yplus(
s(
x), 
y) → 
s(
plus(
x, 
y))
times(
x, 
y) → 
timesIter(
x, 
y, 
0', 
0')
timesIter(
x, 
y, 
z, 
u) → 
ifTimes(
ge(
u, 
x), 
x, 
y, 
z, 
u)
ifTimes(
true, 
x, 
y, 
z, 
u) → 
zifTimes(
false, 
x, 
y, 
z, 
u) → 
timesIter(
x, 
y, 
plus(
y, 
z), 
s(
u))
isempty(
nil) → 
trueisempty(
cons(
x, 
xs)) → 
falsehead(
nil) → 
errorhead(
cons(
x, 
xs)) → 
xtail(
nil) → 
niltail(
cons(
x, 
xs)) → 
xsge(
x, 
0') → 
truege(
0', 
s(
y)) → 
falsege(
s(
x), 
s(
y)) → 
ge(
x, 
y)
a → 
ba → 
cTypes:
prod :: nil:cons → 0':s:error
prodIter :: nil:cons → 0':s:error → 0':s:error
s :: 0':s:error → 0':s:error
0' :: 0':s:error
ifProd :: true:false → nil:cons → 0':s:error → 0':s:error
isempty :: nil:cons → true:false
true :: true:false
false :: true:false
tail :: nil:cons → nil:cons
times :: 0':s:error → 0':s:error → 0':s:error
head :: nil:cons → 0':s:error
plus :: 0':s:error → 0':s:error → 0':s:error
timesIter :: 0':s:error → 0':s:error → 0':s:error → 0':s:error → 0':s:error
ifTimes :: true:false → 0':s:error → 0':s:error → 0':s:error → 0':s:error → 0':s:error
ge :: 0':s:error → 0':s:error → true:false
nil :: nil:cons
cons :: 0':s:error → nil:cons → nil:cons
error :: 0':s:error
a :: b:c
b :: b:c
c :: b:c
hole_0':s:error1_0 :: 0':s:error
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
hole_b:c4_0 :: b:c
gen_0':s:error5_0 :: Nat → 0':s:error
gen_nil:cons6_0 :: Nat → nil:cons
Generator Equations:
gen_0':s:error5_0(0) ⇔ 0'
gen_0':s:error5_0(+(x, 1)) ⇔ s(gen_0':s:error5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(0', gen_nil:cons6_0(x))
The following defined symbols remain to be analysed:
prodIter, plus, timesIter, ge
They will be analysed ascendingly in the following order:
plus < timesIter
ge < timesIter
 
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
prodIter(
gen_nil:cons6_0(
n8_0), 
gen_0':s:error5_0(
0)) → 
gen_0':s:error5_0(
0), rt ∈ Ω(1 + n8
0)
Induction Base:
prodIter(gen_nil:cons6_0(0), gen_0':s:error5_0(0)) →RΩ(1)
ifProd(isempty(gen_nil:cons6_0(0)), gen_nil:cons6_0(0), gen_0':s:error5_0(0)) →RΩ(1)
ifProd(true, gen_nil:cons6_0(0), gen_0':s:error5_0(0)) →RΩ(1)
gen_0':s:error5_0(0)
Induction Step:
prodIter(gen_nil:cons6_0(+(n8_0, 1)), gen_0':s:error5_0(0)) →RΩ(1)
ifProd(isempty(gen_nil:cons6_0(+(n8_0, 1))), gen_nil:cons6_0(+(n8_0, 1)), gen_0':s:error5_0(0)) →RΩ(1)
ifProd(false, gen_nil:cons6_0(+(1, n8_0)), gen_0':s:error5_0(0)) →RΩ(1)
prodIter(tail(gen_nil:cons6_0(+(1, n8_0))), times(gen_0':s:error5_0(0), head(gen_nil:cons6_0(+(1, n8_0))))) →RΩ(1)
prodIter(gen_nil:cons6_0(n8_0), times(gen_0':s:error5_0(0), head(gen_nil:cons6_0(+(1, n8_0))))) →RΩ(1)
prodIter(gen_nil:cons6_0(n8_0), times(gen_0':s:error5_0(0), 0')) →RΩ(1)
prodIter(gen_nil:cons6_0(n8_0), timesIter(gen_0':s:error5_0(0), 0', 0', 0')) →RΩ(1)
prodIter(gen_nil:cons6_0(n8_0), ifTimes(ge(0', gen_0':s:error5_0(0)), gen_0':s:error5_0(0), 0', 0', 0')) →RΩ(1)
prodIter(gen_nil:cons6_0(n8_0), ifTimes(true, gen_0':s:error5_0(0), 0', 0', 0')) →RΩ(1)
prodIter(gen_nil:cons6_0(n8_0), 0') →IH
gen_0':s:error5_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
 
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
prod(
xs) → 
prodIter(
xs, 
s(
0'))
prodIter(
xs, 
x) → 
ifProd(
isempty(
xs), 
xs, 
x)
ifProd(
true, 
xs, 
x) → 
xifProd(
false, 
xs, 
x) → 
prodIter(
tail(
xs), 
times(
x, 
head(
xs)))
plus(
0', 
y) → 
yplus(
s(
x), 
y) → 
s(
plus(
x, 
y))
times(
x, 
y) → 
timesIter(
x, 
y, 
0', 
0')
timesIter(
x, 
y, 
z, 
u) → 
ifTimes(
ge(
u, 
x), 
x, 
y, 
z, 
u)
ifTimes(
true, 
x, 
y, 
z, 
u) → 
zifTimes(
false, 
x, 
y, 
z, 
u) → 
timesIter(
x, 
y, 
plus(
y, 
z), 
s(
u))
isempty(
nil) → 
trueisempty(
cons(
x, 
xs)) → 
falsehead(
nil) → 
errorhead(
cons(
x, 
xs)) → 
xtail(
nil) → 
niltail(
cons(
x, 
xs)) → 
xsge(
x, 
0') → 
truege(
0', 
s(
y)) → 
falsege(
s(
x), 
s(
y)) → 
ge(
x, 
y)
a → 
ba → 
cTypes:
prod :: nil:cons → 0':s:error
prodIter :: nil:cons → 0':s:error → 0':s:error
s :: 0':s:error → 0':s:error
0' :: 0':s:error
ifProd :: true:false → nil:cons → 0':s:error → 0':s:error
isempty :: nil:cons → true:false
true :: true:false
false :: true:false
tail :: nil:cons → nil:cons
times :: 0':s:error → 0':s:error → 0':s:error
head :: nil:cons → 0':s:error
plus :: 0':s:error → 0':s:error → 0':s:error
timesIter :: 0':s:error → 0':s:error → 0':s:error → 0':s:error → 0':s:error
ifTimes :: true:false → 0':s:error → 0':s:error → 0':s:error → 0':s:error → 0':s:error
ge :: 0':s:error → 0':s:error → true:false
nil :: nil:cons
cons :: 0':s:error → nil:cons → nil:cons
error :: 0':s:error
a :: b:c
b :: b:c
c :: b:c
hole_0':s:error1_0 :: 0':s:error
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
hole_b:c4_0 :: b:c
gen_0':s:error5_0 :: Nat → 0':s:error
gen_nil:cons6_0 :: Nat → nil:cons
Lemmas:
prodIter(gen_nil:cons6_0(n8_0), gen_0':s:error5_0(0)) → gen_0':s:error5_0(0), rt ∈ Ω(1 + n80)
Generator Equations:
gen_0':s:error5_0(0) ⇔ 0'
gen_0':s:error5_0(+(x, 1)) ⇔ s(gen_0':s:error5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(0', gen_nil:cons6_0(x))
The following defined symbols remain to be analysed:
plus, timesIter, ge
They will be analysed ascendingly in the following order:
plus < timesIter
ge < timesIter
 
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_0':s:error5_0(
n1635_0), 
gen_0':s:error5_0(
b)) → 
gen_0':s:error5_0(
+(
n1635_0, 
b)), rt ∈ Ω(1 + n1635
0)
Induction Base:
plus(gen_0':s:error5_0(0), gen_0':s:error5_0(b)) →RΩ(1)
gen_0':s:error5_0(b)
Induction Step:
plus(gen_0':s:error5_0(+(n1635_0, 1)), gen_0':s:error5_0(b)) →RΩ(1)
s(plus(gen_0':s:error5_0(n1635_0), gen_0':s:error5_0(b))) →IH
s(gen_0':s:error5_0(+(b, c1636_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
 
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
prod(
xs) → 
prodIter(
xs, 
s(
0'))
prodIter(
xs, 
x) → 
ifProd(
isempty(
xs), 
xs, 
x)
ifProd(
true, 
xs, 
x) → 
xifProd(
false, 
xs, 
x) → 
prodIter(
tail(
xs), 
times(
x, 
head(
xs)))
plus(
0', 
y) → 
yplus(
s(
x), 
y) → 
s(
plus(
x, 
y))
times(
x, 
y) → 
timesIter(
x, 
y, 
0', 
0')
timesIter(
x, 
y, 
z, 
u) → 
ifTimes(
ge(
u, 
x), 
x, 
y, 
z, 
u)
ifTimes(
true, 
x, 
y, 
z, 
u) → 
zifTimes(
false, 
x, 
y, 
z, 
u) → 
timesIter(
x, 
y, 
plus(
y, 
z), 
s(
u))
isempty(
nil) → 
trueisempty(
cons(
x, 
xs)) → 
falsehead(
nil) → 
errorhead(
cons(
x, 
xs)) → 
xtail(
nil) → 
niltail(
cons(
x, 
xs)) → 
xsge(
x, 
0') → 
truege(
0', 
s(
y)) → 
falsege(
s(
x), 
s(
y)) → 
ge(
x, 
y)
a → 
ba → 
cTypes:
prod :: nil:cons → 0':s:error
prodIter :: nil:cons → 0':s:error → 0':s:error
s :: 0':s:error → 0':s:error
0' :: 0':s:error
ifProd :: true:false → nil:cons → 0':s:error → 0':s:error
isempty :: nil:cons → true:false
true :: true:false
false :: true:false
tail :: nil:cons → nil:cons
times :: 0':s:error → 0':s:error → 0':s:error
head :: nil:cons → 0':s:error
plus :: 0':s:error → 0':s:error → 0':s:error
timesIter :: 0':s:error → 0':s:error → 0':s:error → 0':s:error → 0':s:error
ifTimes :: true:false → 0':s:error → 0':s:error → 0':s:error → 0':s:error → 0':s:error
ge :: 0':s:error → 0':s:error → true:false
nil :: nil:cons
cons :: 0':s:error → nil:cons → nil:cons
error :: 0':s:error
a :: b:c
b :: b:c
c :: b:c
hole_0':s:error1_0 :: 0':s:error
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
hole_b:c4_0 :: b:c
gen_0':s:error5_0 :: Nat → 0':s:error
gen_nil:cons6_0 :: Nat → nil:cons
Lemmas:
prodIter(gen_nil:cons6_0(n8_0), gen_0':s:error5_0(0)) → gen_0':s:error5_0(0), rt ∈ Ω(1 + n80)
plus(gen_0':s:error5_0(n1635_0), gen_0':s:error5_0(b)) → gen_0':s:error5_0(+(n1635_0, b)), rt ∈ Ω(1 + n16350)
Generator Equations:
gen_0':s:error5_0(0) ⇔ 0'
gen_0':s:error5_0(+(x, 1)) ⇔ s(gen_0':s:error5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(0', gen_nil:cons6_0(x))
The following defined symbols remain to be analysed:
ge, timesIter
They will be analysed ascendingly in the following order:
ge < timesIter
 
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
ge(
gen_0':s:error5_0(
n2460_0), 
gen_0':s:error5_0(
n2460_0)) → 
true, rt ∈ Ω(1 + n2460
0)
Induction Base:
ge(gen_0':s:error5_0(0), gen_0':s:error5_0(0)) →RΩ(1)
true
Induction Step:
ge(gen_0':s:error5_0(+(n2460_0, 1)), gen_0':s:error5_0(+(n2460_0, 1))) →RΩ(1)
ge(gen_0':s:error5_0(n2460_0), gen_0':s:error5_0(n2460_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
 
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
prod(
xs) → 
prodIter(
xs, 
s(
0'))
prodIter(
xs, 
x) → 
ifProd(
isempty(
xs), 
xs, 
x)
ifProd(
true, 
xs, 
x) → 
xifProd(
false, 
xs, 
x) → 
prodIter(
tail(
xs), 
times(
x, 
head(
xs)))
plus(
0', 
y) → 
yplus(
s(
x), 
y) → 
s(
plus(
x, 
y))
times(
x, 
y) → 
timesIter(
x, 
y, 
0', 
0')
timesIter(
x, 
y, 
z, 
u) → 
ifTimes(
ge(
u, 
x), 
x, 
y, 
z, 
u)
ifTimes(
true, 
x, 
y, 
z, 
u) → 
zifTimes(
false, 
x, 
y, 
z, 
u) → 
timesIter(
x, 
y, 
plus(
y, 
z), 
s(
u))
isempty(
nil) → 
trueisempty(
cons(
x, 
xs)) → 
falsehead(
nil) → 
errorhead(
cons(
x, 
xs)) → 
xtail(
nil) → 
niltail(
cons(
x, 
xs)) → 
xsge(
x, 
0') → 
truege(
0', 
s(
y)) → 
falsege(
s(
x), 
s(
y)) → 
ge(
x, 
y)
a → 
ba → 
cTypes:
prod :: nil:cons → 0':s:error
prodIter :: nil:cons → 0':s:error → 0':s:error
s :: 0':s:error → 0':s:error
0' :: 0':s:error
ifProd :: true:false → nil:cons → 0':s:error → 0':s:error
isempty :: nil:cons → true:false
true :: true:false
false :: true:false
tail :: nil:cons → nil:cons
times :: 0':s:error → 0':s:error → 0':s:error
head :: nil:cons → 0':s:error
plus :: 0':s:error → 0':s:error → 0':s:error
timesIter :: 0':s:error → 0':s:error → 0':s:error → 0':s:error → 0':s:error
ifTimes :: true:false → 0':s:error → 0':s:error → 0':s:error → 0':s:error → 0':s:error
ge :: 0':s:error → 0':s:error → true:false
nil :: nil:cons
cons :: 0':s:error → nil:cons → nil:cons
error :: 0':s:error
a :: b:c
b :: b:c
c :: b:c
hole_0':s:error1_0 :: 0':s:error
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
hole_b:c4_0 :: b:c
gen_0':s:error5_0 :: Nat → 0':s:error
gen_nil:cons6_0 :: Nat → nil:cons
Lemmas:
prodIter(gen_nil:cons6_0(n8_0), gen_0':s:error5_0(0)) → gen_0':s:error5_0(0), rt ∈ Ω(1 + n80)
plus(gen_0':s:error5_0(n1635_0), gen_0':s:error5_0(b)) → gen_0':s:error5_0(+(n1635_0, b)), rt ∈ Ω(1 + n16350)
ge(gen_0':s:error5_0(n2460_0), gen_0':s:error5_0(n2460_0)) → true, rt ∈ Ω(1 + n24600)
Generator Equations:
gen_0':s:error5_0(0) ⇔ 0'
gen_0':s:error5_0(+(x, 1)) ⇔ s(gen_0':s:error5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(0', gen_nil:cons6_0(x))
The following defined symbols remain to be analysed:
timesIter
 
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol timesIter.
(19) Obligation:
TRS:
Rules:
prod(
xs) → 
prodIter(
xs, 
s(
0'))
prodIter(
xs, 
x) → 
ifProd(
isempty(
xs), 
xs, 
x)
ifProd(
true, 
xs, 
x) → 
xifProd(
false, 
xs, 
x) → 
prodIter(
tail(
xs), 
times(
x, 
head(
xs)))
plus(
0', 
y) → 
yplus(
s(
x), 
y) → 
s(
plus(
x, 
y))
times(
x, 
y) → 
timesIter(
x, 
y, 
0', 
0')
timesIter(
x, 
y, 
z, 
u) → 
ifTimes(
ge(
u, 
x), 
x, 
y, 
z, 
u)
ifTimes(
true, 
x, 
y, 
z, 
u) → 
zifTimes(
false, 
x, 
y, 
z, 
u) → 
timesIter(
x, 
y, 
plus(
y, 
z), 
s(
u))
isempty(
nil) → 
trueisempty(
cons(
x, 
xs)) → 
falsehead(
nil) → 
errorhead(
cons(
x, 
xs)) → 
xtail(
nil) → 
niltail(
cons(
x, 
xs)) → 
xsge(
x, 
0') → 
truege(
0', 
s(
y)) → 
falsege(
s(
x), 
s(
y)) → 
ge(
x, 
y)
a → 
ba → 
cTypes:
prod :: nil:cons → 0':s:error
prodIter :: nil:cons → 0':s:error → 0':s:error
s :: 0':s:error → 0':s:error
0' :: 0':s:error
ifProd :: true:false → nil:cons → 0':s:error → 0':s:error
isempty :: nil:cons → true:false
true :: true:false
false :: true:false
tail :: nil:cons → nil:cons
times :: 0':s:error → 0':s:error → 0':s:error
head :: nil:cons → 0':s:error
plus :: 0':s:error → 0':s:error → 0':s:error
timesIter :: 0':s:error → 0':s:error → 0':s:error → 0':s:error → 0':s:error
ifTimes :: true:false → 0':s:error → 0':s:error → 0':s:error → 0':s:error → 0':s:error
ge :: 0':s:error → 0':s:error → true:false
nil :: nil:cons
cons :: 0':s:error → nil:cons → nil:cons
error :: 0':s:error
a :: b:c
b :: b:c
c :: b:c
hole_0':s:error1_0 :: 0':s:error
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
hole_b:c4_0 :: b:c
gen_0':s:error5_0 :: Nat → 0':s:error
gen_nil:cons6_0 :: Nat → nil:cons
Lemmas:
prodIter(gen_nil:cons6_0(n8_0), gen_0':s:error5_0(0)) → gen_0':s:error5_0(0), rt ∈ Ω(1 + n80)
plus(gen_0':s:error5_0(n1635_0), gen_0':s:error5_0(b)) → gen_0':s:error5_0(+(n1635_0, b)), rt ∈ Ω(1 + n16350)
ge(gen_0':s:error5_0(n2460_0), gen_0':s:error5_0(n2460_0)) → true, rt ∈ Ω(1 + n24600)
Generator Equations:
gen_0':s:error5_0(0) ⇔ 0'
gen_0':s:error5_0(+(x, 1)) ⇔ s(gen_0':s:error5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(0', gen_nil:cons6_0(x))
No more defined symbols left to analyse.
 
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
prodIter(gen_nil:cons6_0(n8_0), gen_0':s:error5_0(0)) → gen_0':s:error5_0(0), rt ∈ Ω(1 + n80)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
prod(
xs) → 
prodIter(
xs, 
s(
0'))
prodIter(
xs, 
x) → 
ifProd(
isempty(
xs), 
xs, 
x)
ifProd(
true, 
xs, 
x) → 
xifProd(
false, 
xs, 
x) → 
prodIter(
tail(
xs), 
times(
x, 
head(
xs)))
plus(
0', 
y) → 
yplus(
s(
x), 
y) → 
s(
plus(
x, 
y))
times(
x, 
y) → 
timesIter(
x, 
y, 
0', 
0')
timesIter(
x, 
y, 
z, 
u) → 
ifTimes(
ge(
u, 
x), 
x, 
y, 
z, 
u)
ifTimes(
true, 
x, 
y, 
z, 
u) → 
zifTimes(
false, 
x, 
y, 
z, 
u) → 
timesIter(
x, 
y, 
plus(
y, 
z), 
s(
u))
isempty(
nil) → 
trueisempty(
cons(
x, 
xs)) → 
falsehead(
nil) → 
errorhead(
cons(
x, 
xs)) → 
xtail(
nil) → 
niltail(
cons(
x, 
xs)) → 
xsge(
x, 
0') → 
truege(
0', 
s(
y)) → 
falsege(
s(
x), 
s(
y)) → 
ge(
x, 
y)
a → 
ba → 
cTypes:
prod :: nil:cons → 0':s:error
prodIter :: nil:cons → 0':s:error → 0':s:error
s :: 0':s:error → 0':s:error
0' :: 0':s:error
ifProd :: true:false → nil:cons → 0':s:error → 0':s:error
isempty :: nil:cons → true:false
true :: true:false
false :: true:false
tail :: nil:cons → nil:cons
times :: 0':s:error → 0':s:error → 0':s:error
head :: nil:cons → 0':s:error
plus :: 0':s:error → 0':s:error → 0':s:error
timesIter :: 0':s:error → 0':s:error → 0':s:error → 0':s:error → 0':s:error
ifTimes :: true:false → 0':s:error → 0':s:error → 0':s:error → 0':s:error → 0':s:error
ge :: 0':s:error → 0':s:error → true:false
nil :: nil:cons
cons :: 0':s:error → nil:cons → nil:cons
error :: 0':s:error
a :: b:c
b :: b:c
c :: b:c
hole_0':s:error1_0 :: 0':s:error
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
hole_b:c4_0 :: b:c
gen_0':s:error5_0 :: Nat → 0':s:error
gen_nil:cons6_0 :: Nat → nil:cons
Lemmas:
prodIter(gen_nil:cons6_0(n8_0), gen_0':s:error5_0(0)) → gen_0':s:error5_0(0), rt ∈ Ω(1 + n80)
plus(gen_0':s:error5_0(n1635_0), gen_0':s:error5_0(b)) → gen_0':s:error5_0(+(n1635_0, b)), rt ∈ Ω(1 + n16350)
ge(gen_0':s:error5_0(n2460_0), gen_0':s:error5_0(n2460_0)) → true, rt ∈ Ω(1 + n24600)
Generator Equations:
gen_0':s:error5_0(0) ⇔ 0'
gen_0':s:error5_0(+(x, 1)) ⇔ s(gen_0':s:error5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(0', gen_nil:cons6_0(x))
No more defined symbols left to analyse.
 
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
prodIter(gen_nil:cons6_0(n8_0), gen_0':s:error5_0(0)) → gen_0':s:error5_0(0), rt ∈ Ω(1 + n80)
(24) BOUNDS(n^1, INF)
(25) Obligation:
TRS:
Rules:
prod(
xs) → 
prodIter(
xs, 
s(
0'))
prodIter(
xs, 
x) → 
ifProd(
isempty(
xs), 
xs, 
x)
ifProd(
true, 
xs, 
x) → 
xifProd(
false, 
xs, 
x) → 
prodIter(
tail(
xs), 
times(
x, 
head(
xs)))
plus(
0', 
y) → 
yplus(
s(
x), 
y) → 
s(
plus(
x, 
y))
times(
x, 
y) → 
timesIter(
x, 
y, 
0', 
0')
timesIter(
x, 
y, 
z, 
u) → 
ifTimes(
ge(
u, 
x), 
x, 
y, 
z, 
u)
ifTimes(
true, 
x, 
y, 
z, 
u) → 
zifTimes(
false, 
x, 
y, 
z, 
u) → 
timesIter(
x, 
y, 
plus(
y, 
z), 
s(
u))
isempty(
nil) → 
trueisempty(
cons(
x, 
xs)) → 
falsehead(
nil) → 
errorhead(
cons(
x, 
xs)) → 
xtail(
nil) → 
niltail(
cons(
x, 
xs)) → 
xsge(
x, 
0') → 
truege(
0', 
s(
y)) → 
falsege(
s(
x), 
s(
y)) → 
ge(
x, 
y)
a → 
ba → 
cTypes:
prod :: nil:cons → 0':s:error
prodIter :: nil:cons → 0':s:error → 0':s:error
s :: 0':s:error → 0':s:error
0' :: 0':s:error
ifProd :: true:false → nil:cons → 0':s:error → 0':s:error
isempty :: nil:cons → true:false
true :: true:false
false :: true:false
tail :: nil:cons → nil:cons
times :: 0':s:error → 0':s:error → 0':s:error
head :: nil:cons → 0':s:error
plus :: 0':s:error → 0':s:error → 0':s:error
timesIter :: 0':s:error → 0':s:error → 0':s:error → 0':s:error → 0':s:error
ifTimes :: true:false → 0':s:error → 0':s:error → 0':s:error → 0':s:error → 0':s:error
ge :: 0':s:error → 0':s:error → true:false
nil :: nil:cons
cons :: 0':s:error → nil:cons → nil:cons
error :: 0':s:error
a :: b:c
b :: b:c
c :: b:c
hole_0':s:error1_0 :: 0':s:error
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
hole_b:c4_0 :: b:c
gen_0':s:error5_0 :: Nat → 0':s:error
gen_nil:cons6_0 :: Nat → nil:cons
Lemmas:
prodIter(gen_nil:cons6_0(n8_0), gen_0':s:error5_0(0)) → gen_0':s:error5_0(0), rt ∈ Ω(1 + n80)
plus(gen_0':s:error5_0(n1635_0), gen_0':s:error5_0(b)) → gen_0':s:error5_0(+(n1635_0, b)), rt ∈ Ω(1 + n16350)
Generator Equations:
gen_0':s:error5_0(0) ⇔ 0'
gen_0':s:error5_0(+(x, 1)) ⇔ s(gen_0':s:error5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(0', gen_nil:cons6_0(x))
No more defined symbols left to analyse.
 
(26) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
prodIter(gen_nil:cons6_0(n8_0), gen_0':s:error5_0(0)) → gen_0':s:error5_0(0), rt ∈ Ω(1 + n80)
(27) BOUNDS(n^1, INF)
(28) Obligation:
TRS:
Rules:
prod(
xs) → 
prodIter(
xs, 
s(
0'))
prodIter(
xs, 
x) → 
ifProd(
isempty(
xs), 
xs, 
x)
ifProd(
true, 
xs, 
x) → 
xifProd(
false, 
xs, 
x) → 
prodIter(
tail(
xs), 
times(
x, 
head(
xs)))
plus(
0', 
y) → 
yplus(
s(
x), 
y) → 
s(
plus(
x, 
y))
times(
x, 
y) → 
timesIter(
x, 
y, 
0', 
0')
timesIter(
x, 
y, 
z, 
u) → 
ifTimes(
ge(
u, 
x), 
x, 
y, 
z, 
u)
ifTimes(
true, 
x, 
y, 
z, 
u) → 
zifTimes(
false, 
x, 
y, 
z, 
u) → 
timesIter(
x, 
y, 
plus(
y, 
z), 
s(
u))
isempty(
nil) → 
trueisempty(
cons(
x, 
xs)) → 
falsehead(
nil) → 
errorhead(
cons(
x, 
xs)) → 
xtail(
nil) → 
niltail(
cons(
x, 
xs)) → 
xsge(
x, 
0') → 
truege(
0', 
s(
y)) → 
falsege(
s(
x), 
s(
y)) → 
ge(
x, 
y)
a → 
ba → 
cTypes:
prod :: nil:cons → 0':s:error
prodIter :: nil:cons → 0':s:error → 0':s:error
s :: 0':s:error → 0':s:error
0' :: 0':s:error
ifProd :: true:false → nil:cons → 0':s:error → 0':s:error
isempty :: nil:cons → true:false
true :: true:false
false :: true:false
tail :: nil:cons → nil:cons
times :: 0':s:error → 0':s:error → 0':s:error
head :: nil:cons → 0':s:error
plus :: 0':s:error → 0':s:error → 0':s:error
timesIter :: 0':s:error → 0':s:error → 0':s:error → 0':s:error → 0':s:error
ifTimes :: true:false → 0':s:error → 0':s:error → 0':s:error → 0':s:error → 0':s:error
ge :: 0':s:error → 0':s:error → true:false
nil :: nil:cons
cons :: 0':s:error → nil:cons → nil:cons
error :: 0':s:error
a :: b:c
b :: b:c
c :: b:c
hole_0':s:error1_0 :: 0':s:error
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
hole_b:c4_0 :: b:c
gen_0':s:error5_0 :: Nat → 0':s:error
gen_nil:cons6_0 :: Nat → nil:cons
Lemmas:
prodIter(gen_nil:cons6_0(n8_0), gen_0':s:error5_0(0)) → gen_0':s:error5_0(0), rt ∈ Ω(1 + n80)
Generator Equations:
gen_0':s:error5_0(0) ⇔ 0'
gen_0':s:error5_0(+(x, 1)) ⇔ s(gen_0':s:error5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(0', gen_nil:cons6_0(x))
No more defined symbols left to analyse.
 
(29) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
prodIter(gen_nil:cons6_0(n8_0), gen_0':s:error5_0(0)) → gen_0':s:error5_0(0), rt ∈ Ω(1 + n80)
(30) BOUNDS(n^1, INF)