(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
twice(0) → 0
twice(s(x)) → s(s(twice(x)))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), s(y)) → f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
min(s(x), s(y)) →+ s(min(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

min(0', y) → 0'
min(x, 0') → 0'
min(s(x), s(y)) → s(min(x, y))
max(0', y) → y
max(x, 0') → x
max(s(x), s(y)) → s(max(x, y))
twice(0') → 0'
twice(s(x)) → s(s(twice(x)))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), s(y)) → f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
min(0', y) → 0'
min(x, 0') → 0'
min(s(x), s(y)) → s(min(x, y))
max(0', y) → y
max(x, 0') → x
max(s(x), s(y)) → s(max(x, y))
twice(0') → 0'
twice(s(x)) → s(s(twice(x)))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), s(y)) → f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
min, max, twice, -, f

They will be analysed ascendingly in the following order:
min < f
max < f
twice < f
- < f

(8) Obligation:

TRS:
Rules:
min(0', y) → 0'
min(x, 0') → 0'
min(s(x), s(y)) → s(min(x, y))
max(0', y) → y
max(x, 0') → x
max(s(x), s(y)) → s(max(x, y))
twice(0') → 0'
twice(s(x)) → s(s(twice(x)))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), s(y)) → f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
min, max, twice, -, f

They will be analysed ascendingly in the following order:
min < f
max < f
twice < f
- < f

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)

Induction Base:
min(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
0'

Induction Step:
min(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
s(min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0))) →IH
s(gen_0':s3_0(c6_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
min(0', y) → 0'
min(x, 0') → 0'
min(s(x), s(y)) → s(min(x, y))
max(0', y) → y
max(x, 0') → x
max(s(x), s(y)) → s(max(x, y))
twice(0') → 0'
twice(s(x)) → s(s(twice(x)))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), s(y)) → f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s

Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
max, twice, -, f

They will be analysed ascendingly in the following order:
max < f
twice < f
- < f

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
max(gen_0':s3_0(n320_0), gen_0':s3_0(n320_0)) → gen_0':s3_0(n320_0), rt ∈ Ω(1 + n3200)

Induction Base:
max(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)

Induction Step:
max(gen_0':s3_0(+(n320_0, 1)), gen_0':s3_0(+(n320_0, 1))) →RΩ(1)
s(max(gen_0':s3_0(n320_0), gen_0':s3_0(n320_0))) →IH
s(gen_0':s3_0(c321_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(13) Complex Obligation (BEST)

(14) Obligation:

TRS:
Rules:
min(0', y) → 0'
min(x, 0') → 0'
min(s(x), s(y)) → s(min(x, y))
max(0', y) → y
max(x, 0') → x
max(s(x), s(y)) → s(max(x, y))
twice(0') → 0'
twice(s(x)) → s(s(twice(x)))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), s(y)) → f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s

Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n320_0), gen_0':s3_0(n320_0)) → gen_0':s3_0(n320_0), rt ∈ Ω(1 + n3200)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
twice, -, f

They will be analysed ascendingly in the following order:
twice < f
- < f

(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
twice(gen_0':s3_0(n717_0)) → gen_0':s3_0(*(2, n717_0)), rt ∈ Ω(1 + n7170)

Induction Base:
twice(gen_0':s3_0(0)) →RΩ(1)
0'

Induction Step:
twice(gen_0':s3_0(+(n717_0, 1))) →RΩ(1)
s(s(twice(gen_0':s3_0(n717_0)))) →IH
s(s(gen_0':s3_0(*(2, c718_0))))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(16) Complex Obligation (BEST)

(17) Obligation:

TRS:
Rules:
min(0', y) → 0'
min(x, 0') → 0'
min(s(x), s(y)) → s(min(x, y))
max(0', y) → y
max(x, 0') → x
max(s(x), s(y)) → s(max(x, y))
twice(0') → 0'
twice(s(x)) → s(s(twice(x)))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), s(y)) → f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s

Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n320_0), gen_0':s3_0(n320_0)) → gen_0':s3_0(n320_0), rt ∈ Ω(1 + n3200)
twice(gen_0':s3_0(n717_0)) → gen_0':s3_0(*(2, n717_0)), rt ∈ Ω(1 + n7170)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
-, f

They will be analysed ascendingly in the following order:
- < f

(18) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
-(gen_0':s3_0(n977_0), gen_0':s3_0(n977_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n9770)

Induction Base:
-(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)

Induction Step:
-(gen_0':s3_0(+(n977_0, 1)), gen_0':s3_0(+(n977_0, 1))) →RΩ(1)
-(gen_0':s3_0(n977_0), gen_0':s3_0(n977_0)) →IH
gen_0':s3_0(0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(19) Complex Obligation (BEST)

(20) Obligation:

TRS:
Rules:
min(0', y) → 0'
min(x, 0') → 0'
min(s(x), s(y)) → s(min(x, y))
max(0', y) → y
max(x, 0') → x
max(s(x), s(y)) → s(max(x, y))
twice(0') → 0'
twice(s(x)) → s(s(twice(x)))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), s(y)) → f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s

Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n320_0), gen_0':s3_0(n320_0)) → gen_0':s3_0(n320_0), rt ∈ Ω(1 + n3200)
twice(gen_0':s3_0(n717_0)) → gen_0':s3_0(*(2, n717_0)), rt ∈ Ω(1 + n7170)
-(gen_0':s3_0(n977_0), gen_0':s3_0(n977_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n9770)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
f

(21) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol f.

(22) Obligation:

TRS:
Rules:
min(0', y) → 0'
min(x, 0') → 0'
min(s(x), s(y)) → s(min(x, y))
max(0', y) → y
max(x, 0') → x
max(s(x), s(y)) → s(max(x, y))
twice(0') → 0'
twice(s(x)) → s(s(twice(x)))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), s(y)) → f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s

Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n320_0), gen_0':s3_0(n320_0)) → gen_0':s3_0(n320_0), rt ∈ Ω(1 + n3200)
twice(gen_0':s3_0(n717_0)) → gen_0':s3_0(*(2, n717_0)), rt ∈ Ω(1 + n7170)
-(gen_0':s3_0(n977_0), gen_0':s3_0(n977_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n9770)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(23) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)

(24) BOUNDS(n^1, INF)

(25) Obligation:

TRS:
Rules:
min(0', y) → 0'
min(x, 0') → 0'
min(s(x), s(y)) → s(min(x, y))
max(0', y) → y
max(x, 0') → x
max(s(x), s(y)) → s(max(x, y))
twice(0') → 0'
twice(s(x)) → s(s(twice(x)))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), s(y)) → f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s

Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n320_0), gen_0':s3_0(n320_0)) → gen_0':s3_0(n320_0), rt ∈ Ω(1 + n3200)
twice(gen_0':s3_0(n717_0)) → gen_0':s3_0(*(2, n717_0)), rt ∈ Ω(1 + n7170)
-(gen_0':s3_0(n977_0), gen_0':s3_0(n977_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n9770)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(26) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)

(27) BOUNDS(n^1, INF)

(28) Obligation:

TRS:
Rules:
min(0', y) → 0'
min(x, 0') → 0'
min(s(x), s(y)) → s(min(x, y))
max(0', y) → y
max(x, 0') → x
max(s(x), s(y)) → s(max(x, y))
twice(0') → 0'
twice(s(x)) → s(s(twice(x)))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), s(y)) → f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s

Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n320_0), gen_0':s3_0(n320_0)) → gen_0':s3_0(n320_0), rt ∈ Ω(1 + n3200)
twice(gen_0':s3_0(n717_0)) → gen_0':s3_0(*(2, n717_0)), rt ∈ Ω(1 + n7170)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(29) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)

(30) BOUNDS(n^1, INF)

(31) Obligation:

TRS:
Rules:
min(0', y) → 0'
min(x, 0') → 0'
min(s(x), s(y)) → s(min(x, y))
max(0', y) → y
max(x, 0') → x
max(s(x), s(y)) → s(max(x, y))
twice(0') → 0'
twice(s(x)) → s(s(twice(x)))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), s(y)) → f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s

Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n320_0), gen_0':s3_0(n320_0)) → gen_0':s3_0(n320_0), rt ∈ Ω(1 + n3200)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(32) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)

(33) BOUNDS(n^1, INF)

(34) Obligation:

TRS:
Rules:
min(0', y) → 0'
min(x, 0') → 0'
min(s(x), s(y)) → s(min(x, y))
max(0', y) → y
max(x, 0') → x
max(s(x), s(y)) → s(max(x, y))
twice(0') → 0'
twice(s(x)) → s(s(twice(x)))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), s(y)) → f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
twice :: 0':s → 0':s
- :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s

Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(35) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)

(36) BOUNDS(n^1, INF)