* Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(k(a()),k(b()),X) -> f(X,X,X) g(X) -> u(h(X),h(X),X) h(d()) -> c(a()) h(d()) -> c(b()) u(d(),c(Y),X) -> k(Y) - Signature: {f/3,g/1,h/1,u/3} / {a/0,b/0,c/1,d/0,k/1} - Obligation: runtime complexity wrt. defined symbols {f,g,h,u} and constructors {a,b,c,d,k} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak dependency pairs: Strict DPs f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) g#(X) -> c_2(u#(h(X),h(X),X)) h#(d()) -> c_3() h#(d()) -> c_4() u#(d(),c(Y),X) -> c_5(Y) Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) g#(X) -> c_2(u#(h(X),h(X),X)) h#(d()) -> c_3() h#(d()) -> c_4() u#(d(),c(Y),X) -> c_5(Y) - Strict TRS: f(k(a()),k(b()),X) -> f(X,X,X) g(X) -> u(h(X),h(X),X) h(d()) -> c(a()) h(d()) -> c(b()) u(d(),c(Y),X) -> k(Y) - Signature: {f/3,g/1,h/1,u/3,f#/3,g#/1,h#/1,u#/3} / {a/0,b/0,c/1,d/0,k/1,c_1/1,c_2/1,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#,h#,u#} and constructors {a,b,c,d,k} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: h(d()) -> c(a()) h(d()) -> c(b()) f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) g#(X) -> c_2(u#(h(X),h(X),X)) h#(d()) -> c_3() h#(d()) -> c_4() u#(d(),c(Y),X) -> c_5(Y) * Step 3: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) g#(X) -> c_2(u#(h(X),h(X),X)) h#(d()) -> c_3() h#(d()) -> c_4() u#(d(),c(Y),X) -> c_5(Y) - Strict TRS: h(d()) -> c(a()) h(d()) -> c(b()) - Signature: {f/3,g/1,h/1,u/3,f#/3,g#/1,h#/1,u#/3} / {a/0,b/0,c/1,d/0,k/1,c_1/1,c_2/1,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#,h#,u#} and constructors {a,b,c,d,k} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(u#) = {1,2}, uargs(c_2) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(a) = [0] p(b) = [0] p(c) = [0] p(d) = [0] p(f) = [0] p(g) = [0] p(h) = [5] p(k) = [1] x1 + [0] p(u) = [0] p(f#) = [0] p(g#) = [0] p(h#) = [0] p(u#) = [1] x1 + [1] x2 + [0] p(c_1) = [8] x1 + [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [0] Following rules are strictly oriented: h(d()) = [5] > [0] = c(a()) h(d()) = [5] > [0] = c(b()) Following rules are (at-least) weakly oriented: f#(k(a()),k(b()),X) = [0] >= [0] = c_1(f#(X,X,X)) g#(X) = [0] >= [10] = c_2(u#(h(X),h(X),X)) h#(d()) = [0] >= [0] = c_3() h#(d()) = [0] >= [0] = c_4() u#(d(),c(Y),X) = [0] >= [0] = c_5(Y) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 4: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) g#(X) -> c_2(u#(h(X),h(X),X)) h#(d()) -> c_3() h#(d()) -> c_4() u#(d(),c(Y),X) -> c_5(Y) - Weak TRS: h(d()) -> c(a()) h(d()) -> c(b()) - Signature: {f/3,g/1,h/1,u/3,f#/3,g#/1,h#/1,u#/3} / {a/0,b/0,c/1,d/0,k/1,c_1/1,c_2/1,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#,h#,u#} and constructors {a,b,c,d,k} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {3,4} by application of Pre({3,4}) = {5}. Here rules are labelled as follows: 1: f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) 2: g#(X) -> c_2(u#(h(X),h(X),X)) 3: h#(d()) -> c_3() 4: h#(d()) -> c_4() 5: u#(d(),c(Y),X) -> c_5(Y) * Step 5: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) g#(X) -> c_2(u#(h(X),h(X),X)) u#(d(),c(Y),X) -> c_5(Y) - Weak DPs: h#(d()) -> c_3() h#(d()) -> c_4() - Weak TRS: h(d()) -> c(a()) h(d()) -> c(b()) - Signature: {f/3,g/1,h/1,u/3,f#/3,g#/1,h#/1,u#/3} / {a/0,b/0,c/1,d/0,k/1,c_1/1,c_2/1,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#,h#,u#} and constructors {a,b,c,d,k} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) -->_1 f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)):1 2:S:g#(X) -> c_2(u#(h(X),h(X),X)) -->_1 u#(d(),c(Y),X) -> c_5(Y):3 3:S:u#(d(),c(Y),X) -> c_5(Y) -->_1 h#(d()) -> c_4():5 -->_1 h#(d()) -> c_3():4 -->_1 u#(d(),c(Y),X) -> c_5(Y):3 -->_1 g#(X) -> c_2(u#(h(X),h(X),X)):2 -->_1 f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)):1 4:W:h#(d()) -> c_3() 5:W:h#(d()) -> c_4() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: h#(d()) -> c_3() 5: h#(d()) -> c_4() * Step 6: PredecessorEstimationCP WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) g#(X) -> c_2(u#(h(X),h(X),X)) u#(d(),c(Y),X) -> c_5(Y) - Weak TRS: h(d()) -> c(a()) h(d()) -> c(b()) - Signature: {f/3,g/1,h/1,u/3,f#/3,g#/1,h#/1,u#/3} / {a/0,b/0,c/1,d/0,k/1,c_1/1,c_2/1,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#,h#,u#} and constructors {a,b,c,d,k} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) 3: u#(d(),c(Y),X) -> c_5(Y) Consider the set of all dependency pairs 1: f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) 2: g#(X) -> c_2(u#(h(X),h(X),X)) 3: u#(d(),c(Y),X) -> c_5(Y) Processor NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(1)) SPACE(?,?)on application of the dependency pairs {1,3} These cover all (indirect) predecessors of dependency pairs {1,2,3} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. ** Step 6.a:1: NaturalMI WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) g#(X) -> c_2(u#(h(X),h(X),X)) u#(d(),c(Y),X) -> c_5(Y) - Weak TRS: h(d()) -> c(a()) h(d()) -> c(b()) - Signature: {f/3,g/1,h/1,u/3,f#/3,g#/1,h#/1,u#/3} / {a/0,b/0,c/1,d/0,k/1,c_1/1,c_2/1,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#,h#,u#} and constructors {a,b,c,d,k} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_2) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(a) = [0] p(b) = [0] p(c) = [0] p(d) = [1] p(f) = [1] x1 + [1] x2 + [8] x3 + [1] p(g) = [1] p(h) = [0] p(k) = [2] p(u) = [1] x1 + [2] x2 + [8] x3 + [8] p(f#) = [14] x1 + [0] p(g#) = [1] x1 + [15] p(h#) = [0] p(u#) = [4] x1 + [1] p(c_1) = [0] p(c_2) = [8] x1 + [7] p(c_3) = [2] p(c_4) = [2] p(c_5) = [1] Following rules are strictly oriented: f#(k(a()),k(b()),X) = [28] > [0] = c_1(f#(X,X,X)) u#(d(),c(Y),X) = [5] > [1] = c_5(Y) Following rules are (at-least) weakly oriented: g#(X) = [1] X + [15] >= [15] = c_2(u#(h(X),h(X),X)) h(d()) = [0] >= [0] = c(a()) h(d()) = [0] >= [0] = c(b()) ** Step 6.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: g#(X) -> c_2(u#(h(X),h(X),X)) - Weak DPs: f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) u#(d(),c(Y),X) -> c_5(Y) - Weak TRS: h(d()) -> c(a()) h(d()) -> c(b()) - Signature: {f/3,g/1,h/1,u/3,f#/3,g#/1,h#/1,u#/3} / {a/0,b/0,c/1,d/0,k/1,c_1/1,c_2/1,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#,h#,u#} and constructors {a,b,c,d,k} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ** Step 6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) g#(X) -> c_2(u#(h(X),h(X),X)) u#(d(),c(Y),X) -> c_5(Y) - Weak TRS: h(d()) -> c(a()) h(d()) -> c(b()) - Signature: {f/3,g/1,h/1,u/3,f#/3,g#/1,h#/1,u#/3} / {a/0,b/0,c/1,d/0,k/1,c_1/1,c_2/1,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#,h#,u#} and constructors {a,b,c,d,k} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) -->_1 f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)):1 2:W:g#(X) -> c_2(u#(h(X),h(X),X)) -->_1 u#(d(),c(Y),X) -> c_5(Y):3 3:W:u#(d(),c(Y),X) -> c_5(Y) -->_1 u#(d(),c(Y),X) -> c_5(Y):3 -->_1 g#(X) -> c_2(u#(h(X),h(X),X)):2 -->_1 f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: g#(X) -> c_2(u#(h(X),h(X),X)) 3: u#(d(),c(Y),X) -> c_5(Y) 1: f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) ** Step 6.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: h(d()) -> c(a()) h(d()) -> c(b()) - Signature: {f/3,g/1,h/1,u/3,f#/3,g#/1,h#/1,u#/3} / {a/0,b/0,c/1,d/0,k/1,c_1/1,c_2/1,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#,h#,u#} and constructors {a,b,c,d,k} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))