0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 20 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 BOUNDS(1, 1)
g(X) → u(h(X), h(X), X)
u(d, c(Y), X) → k(Y)
h(d) → c(a)
h(d) → c(b)
f(k(a), k(b), X) → f(X, X, X)
The duplicating contexts are:
g([])
f(k(a), k(b), [])
The defined contexts are:
u([], x1, x2)
u(x0, [], x2)
[] just represents basic- or constructor-terms in the following defined contexts:
u([], x1, x2)
u(x0, [], x2)
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
g(X) → u(h(X), h(X), X)
u(d, c(Y), X) → k(Y)
h(d) → c(a)
h(d) → c(b)
f(k(a), k(b), X) → f(X, X, X)
Tuples:
g(z0) → u(h(z0), h(z0), z0)
u(d, c(z0), z1) → k(z0)
h(d) → c(a)
h(d) → c(b)
f(k(a), k(b), z0) → f(z0, z0, z0)
S tuples:
G(z0) → c1(U(h(z0), h(z0), z0), H(z0), H(z0))
U(d, c(z0), z1) → c2
H(d) → c3
H(d) → c4
F(k(a), k(b), z0) → c5(F(z0, z0, z0))
K tuples:none
G(z0) → c1(U(h(z0), h(z0), z0), H(z0), H(z0))
U(d, c(z0), z1) → c2
H(d) → c3
H(d) → c4
F(k(a), k(b), z0) → c5(F(z0, z0, z0))
g, u, h, f
G, U, H, F
c1, c2, c3, c4, c5
G(z0) → c1(U(h(z0), h(z0), z0), H(z0), H(z0))
F(k(a), k(b), z0) → c5(F(z0, z0, z0))
H(d) → c4
H(d) → c3
U(d, c(z0), z1) → c2
Tuples:none
g(z0) → u(h(z0), h(z0), z0)
u(d, c(z0), z1) → k(z0)
h(d) → c(a)
h(d) → c(b)
f(k(a), k(b), z0) → f(z0, z0, z0)
g, u, h, f