0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 12 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtUsableRulesProof (⇔, 0 ms)
↳8 CdtProblem
↳9 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 31 ms)
↳10 CdtProblem
↳11 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 BOUNDS(1, 1)
f(x, x) → a
f(g(x), y) → f(x, y)
As the TRS does not nest defined symbols, we have rc = irc.
f(x, x) → a
f(g(x), y) → f(x, y)
Tuples:
f(z0, z0) → a
f(g(z0), z1) → f(z0, z1)
S tuples:
F(z0, z0) → c
F(g(z0), z1) → c1(F(z0, z1))
K tuples:none
F(z0, z0) → c
F(g(z0), z1) → c1(F(z0, z1))
f
F
c, c1
F(z0, z0) → c
Tuples:
f(z0, z0) → a
f(g(z0), z1) → f(z0, z1)
S tuples:
F(g(z0), z1) → c1(F(z0, z1))
K tuples:none
F(g(z0), z1) → c1(F(z0, z1))
f
F
c1
f(z0, z0) → a
f(g(z0), z1) → f(z0, z1)
S tuples:
F(g(z0), z1) → c1(F(z0, z1))
K tuples:none
F(g(z0), z1) → c1(F(z0, z1))
F
c1
We considered the (Usable) Rules:none
F(g(z0), z1) → c1(F(z0, z1))
The order we found is given by the following interpretation:
F(g(z0), z1) → c1(F(z0, z1))
POL(F(x1, x2)) = x1
POL(c1(x1)) = x1
POL(g(x1)) = [1] + x1
S tuples:none
F(g(z0), z1) → c1(F(z0, z1))
Defined Rule Symbols:none
F(g(z0), z1) → c1(F(z0, z1))
F
c1