0 CpxTRS
↳1 NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID), 21 ms)
↳2 CpxTRS
↳3 RcToIrcProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTRS
↳5 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtUsableRulesProof (⇔, 0 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 118 ms)
↳12 CdtProblem
↳13 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 0 ms)
↳14 CdtProblem
↳15 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 BOUNDS(1, 1)
f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)
f(x, nil) → g(nil, x)
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(nil, y) → false
++(x, nil) → x
null(g(x, y)) → false
f(x, g(y, z)) → g(f(x, y), z)
As the TRS does not nest defined symbols, we have rc = irc.
f(x, nil) → g(nil, x)
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(nil, y) → false
++(x, nil) → x
null(g(x, y)) → false
f(x, g(y, z)) → g(f(x, y), z)
Tuples:
f(z0, nil) → g(nil, z0)
f(z0, g(z1, z2)) → g(f(z0, z1), z2)
max(g(g(nil, z0), z1)) → max'(z0, z1)
max(g(g(g(z0, z1), z2), u)) → max'(max(g(g(z0, z1), z2)), u)
++(z0, g(z1, z2)) → g(++(z0, z1), z2)
++(z0, nil) → z0
null(nil) → true
null(g(z0, z1)) → false
mem(g(z0, z1), z2) → or(=(z1, z2), mem(z0, z2))
mem(nil, z0) → false
S tuples:
F(z0, nil) → c
F(z0, g(z1, z2)) → c1(F(z0, z1))
MAX(g(g(nil, z0), z1)) → c2
MAX(g(g(g(z0, z1), z2), u)) → c3(MAX(g(g(z0, z1), z2)))
++'(z0, g(z1, z2)) → c4(++'(z0, z1))
++'(z0, nil) → c5
NULL(nil) → c6
NULL(g(z0, z1)) → c7
MEM(g(z0, z1), z2) → c8(MEM(z0, z2))
MEM(nil, z0) → c9
K tuples:none
F(z0, nil) → c
F(z0, g(z1, z2)) → c1(F(z0, z1))
MAX(g(g(nil, z0), z1)) → c2
MAX(g(g(g(z0, z1), z2), u)) → c3(MAX(g(g(z0, z1), z2)))
++'(z0, g(z1, z2)) → c4(++'(z0, z1))
++'(z0, nil) → c5
NULL(nil) → c6
NULL(g(z0, z1)) → c7
MEM(g(z0, z1), z2) → c8(MEM(z0, z2))
MEM(nil, z0) → c9
f, max, ++, null, mem
F, MAX, ++', NULL, MEM
c, c1, c2, c3, c4, c5, c6, c7, c8, c9
++'(z0, nil) → c5
MEM(nil, z0) → c9
F(z0, nil) → c
NULL(g(z0, z1)) → c7
NULL(nil) → c6
MAX(g(g(nil, z0), z1)) → c2
Tuples:
f(z0, nil) → g(nil, z0)
f(z0, g(z1, z2)) → g(f(z0, z1), z2)
max(g(g(nil, z0), z1)) → max'(z0, z1)
max(g(g(g(z0, z1), z2), u)) → max'(max(g(g(z0, z1), z2)), u)
++(z0, g(z1, z2)) → g(++(z0, z1), z2)
++(z0, nil) → z0
null(nil) → true
null(g(z0, z1)) → false
mem(g(z0, z1), z2) → or(=(z1, z2), mem(z0, z2))
mem(nil, z0) → false
S tuples:
F(z0, g(z1, z2)) → c1(F(z0, z1))
MAX(g(g(g(z0, z1), z2), u)) → c3(MAX(g(g(z0, z1), z2)))
++'(z0, g(z1, z2)) → c4(++'(z0, z1))
MEM(g(z0, z1), z2) → c8(MEM(z0, z2))
K tuples:none
F(z0, g(z1, z2)) → c1(F(z0, z1))
MAX(g(g(g(z0, z1), z2), u)) → c3(MAX(g(g(z0, z1), z2)))
++'(z0, g(z1, z2)) → c4(++'(z0, z1))
MEM(g(z0, z1), z2) → c8(MEM(z0, z2))
f, max, ++, null, mem
F, MAX, ++', MEM
c1, c3, c4, c8
f(z0, nil) → g(nil, z0)
f(z0, g(z1, z2)) → g(f(z0, z1), z2)
max(g(g(nil, z0), z1)) → max'(z0, z1)
max(g(g(g(z0, z1), z2), u)) → max'(max(g(g(z0, z1), z2)), u)
++(z0, g(z1, z2)) → g(++(z0, z1), z2)
++(z0, nil) → z0
null(nil) → true
null(g(z0, z1)) → false
mem(g(z0, z1), z2) → or(=(z1, z2), mem(z0, z2))
mem(nil, z0) → false
S tuples:
F(z0, g(z1, z2)) → c1(F(z0, z1))
MAX(g(g(g(z0, z1), z2), u)) → c3(MAX(g(g(z0, z1), z2)))
++'(z0, g(z1, z2)) → c4(++'(z0, z1))
MEM(g(z0, z1), z2) → c8(MEM(z0, z2))
K tuples:none
F(z0, g(z1, z2)) → c1(F(z0, z1))
MAX(g(g(g(z0, z1), z2), u)) → c3(MAX(g(g(z0, z1), z2)))
++'(z0, g(z1, z2)) → c4(++'(z0, z1))
MEM(g(z0, z1), z2) → c8(MEM(z0, z2))
F, MAX, ++', MEM
c1, c3, c4, c8
We considered the (Usable) Rules:none
F(z0, g(z1, z2)) → c1(F(z0, z1))
MAX(g(g(g(z0, z1), z2), u)) → c3(MAX(g(g(z0, z1), z2)))
MEM(g(z0, z1), z2) → c8(MEM(z0, z2))
The order we found is given by the following interpretation:
F(z0, g(z1, z2)) → c1(F(z0, z1))
MAX(g(g(g(z0, z1), z2), u)) → c3(MAX(g(g(z0, z1), z2)))
++'(z0, g(z1, z2)) → c4(++'(z0, z1))
MEM(g(z0, z1), z2) → c8(MEM(z0, z2))
POL(++'(x1, x2)) = 0
POL(F(x1, x2)) = x2
POL(MAX(x1)) = x1
POL(MEM(x1, x2)) = x1
POL(c1(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c8(x1)) = x1
POL(g(x1, x2)) = [1] + x1
POL(u) = 0
S tuples:
F(z0, g(z1, z2)) → c1(F(z0, z1))
MAX(g(g(g(z0, z1), z2), u)) → c3(MAX(g(g(z0, z1), z2)))
++'(z0, g(z1, z2)) → c4(++'(z0, z1))
MEM(g(z0, z1), z2) → c8(MEM(z0, z2))
K tuples:
++'(z0, g(z1, z2)) → c4(++'(z0, z1))
Defined Rule Symbols:none
F(z0, g(z1, z2)) → c1(F(z0, z1))
MAX(g(g(g(z0, z1), z2), u)) → c3(MAX(g(g(z0, z1), z2)))
MEM(g(z0, z1), z2) → c8(MEM(z0, z2))
F, MAX, ++', MEM
c1, c3, c4, c8
We considered the (Usable) Rules:none
++'(z0, g(z1, z2)) → c4(++'(z0, z1))
The order we found is given by the following interpretation:
F(z0, g(z1, z2)) → c1(F(z0, z1))
MAX(g(g(g(z0, z1), z2), u)) → c3(MAX(g(g(z0, z1), z2)))
++'(z0, g(z1, z2)) → c4(++'(z0, z1))
MEM(g(z0, z1), z2) → c8(MEM(z0, z2))
POL(++'(x1, x2)) = x2
POL(F(x1, x2)) = 0
POL(MAX(x1)) = 0
POL(MEM(x1, x2)) = 0
POL(c1(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c8(x1)) = x1
POL(g(x1, x2)) = [1] + x1
POL(u) = 0
S tuples:none
F(z0, g(z1, z2)) → c1(F(z0, z1))
MAX(g(g(g(z0, z1), z2), u)) → c3(MAX(g(g(z0, z1), z2)))
++'(z0, g(z1, z2)) → c4(++'(z0, z1))
MEM(g(z0, z1), z2) → c8(MEM(z0, z2))
Defined Rule Symbols:none
F(z0, g(z1, z2)) → c1(F(z0, z1))
MAX(g(g(g(z0, z1), z2), u)) → c3(MAX(g(g(z0, z1), z2)))
MEM(g(z0, z1), z2) → c8(MEM(z0, z2))
++'(z0, g(z1, z2)) → c4(++'(z0, z1))
F, MAX, ++', MEM
c1, c3, c4, c8